REVIEW PAPER
Coumarins as anti-HIV agent and correlation with COVID-19: an overview
 
More details
Hide details
1
Department of Chemistry, Uttarakhand Technical University, Dehradun Uttarakhand, India
 
2
Department of Chemistry, Graphic Era deemed to be University, Dehradun Uttarakhand, India
 
3
Department of Food Tech, Graphic Era deemed to be University, Dehradun, Uttarakhand, India
 
 
Submission date: 2021-06-07
 
 
Final revision date: 2021-07-21
 
 
Acceptance date: 2021-07-23
 
 
Publication date: 2023-04-21
 
 
HIV & AIDS Review 2023;22(2):87-98
 
KEYWORDS
TOPICS
ABSTRACT
Acquired immunodeficiency syndrome (AIDS) is an immunosuppressive disease caused by human immunodeficiency virus (HIV), and leads to infection and malignance, which are life threatening. HIV/AIDS cause numerous deaths in Africa, and is the leading cause of death in India, affecting every fourth living HIV patient. The amount in Southeast Asia is increasing at alarming rate. In this paper, the current issue of COVID-19 and its’ possible target of HIV drugs that inhibit entry of the virus into host cell were investigated. Three main groups of coronavirus are surrounded by spike genes, showing that for fusion mechanism, these groups are common mode for attachment. For nearly all disease areas, plant kingdom biodiversity provides a source of new drug candidates. There is a continuous increase in various compounds with anti-HIV activity isolated from natural sources. Various literature and current COVID-19 pandemic situation were considered in the present report. Phase II clinical candidates are calanolide A, a coumarins isolated from Calophyllum lanigerum, and two other natural product-derived molecules, such as DSB and 3-hydroxymethyl-4-methyl DCK, with a potential to emerge as HIV therapy drugs. This naturally obtained product with anti-HIV properties was described in the present paper, focusing on current results as anti-HIV agents derived from natural sources.
REFERENCES (84)
1.
UNAIDS/WHO. AIDS Epidemic Update; 2004. Available at: http://www.unaids.org.
 
2.
Coffin JM. HIV population dynamics in vivo: implications for genetic variation, pathogenesis and therapy. Science 1995; 267: 483-488.
 
3.
De Clercq E. Antiviral therapy for human immunodeficiency virus infections. Clin Microbiol Rev 1995; 8: 200-239.
 
4.
Matthee G, Wright AD, Konig GM. HIV reverse transcriptase inhibitors of natural origin. Planta Med 1999; 65: 493-506.
 
5.
Ami EI, Ohrui H. Intriguing antiviral modified nucleosides: a retrospective view into the future treatment of COVID-19. ACS Med Chem Lett 2021; 12: 510-517.
 
6.
Musarrat F, Chouljenko V, Dahal A, et al. The anti-HIV drug nelfinavir mesylate (Viracept) is a potent inhibitor of cell fusion caused by the SARSCoV-2 spike (S) glycoprotein warranting further evaluation as an antiviral against COVID-19 infections. J Med Virol 2020; 92: 2087-2095.
 
7.
Ohashi H, Watashi K, Saso W, et al. Potential anti-COVID-19 agents, cepharanthine and nelfinavir, and their usage for combination treatment. Iscience 2021; 24: 102367.
 
8.
Midde NM, Patters BJ, Rao PS, et al. Investigational protease inhibitors as antiretroviral therapies. Exp Opin Investig Drugs 2016; 25: 1189-1200.
 
9.
Mudgal MM, Birudukota N, Doke MA. Applications of click chemistry in the development of HIV protease inhibitors. Int J Med Chem 2018; 2018: 2946730. doi: 10.1155/2018/2946730.
 
10.
McKee TC, Covington CD, Fuller R. Pyranocoumarins from species of the genus Callophyllum: a chemotaxanomic study of extracts in the National Cancer Institute Collection. J Nat Prod 1998; 61: 1252-1256.
 
11.
Buckheit RW Jr, White EL, Fliakas-Boltz V, et al. Unique anti-human immunodeficiency virus activities of the non-nucleoside reverse transcriptase inhibitors calanolide A, costatolide and dihydrocostatolide. Antimicrob Agents Chemother 1993; 43: 1827-1834.
 
12.
Sarawak MediChem Pharmaceuticals Inc, Woodridge, IL, USA. Available at: http://www.sarawak-medichem.co....
 
13.
Dharmaratne HRW, Tan GT, Marasinghe GPK, Pezzuto JM. Inhibition of HIV-1 reverse transcriptase and HIV-1 replication by Callophyllum coumarins and Xanthones. Planta Med 2002; 68: 86-87.
 
14.
Tsai IL, Wun MF, Teng CM, et al. Anti-platelet aggregation constituents from Formosan Toddalia asiatica. Phytochemistry 1998; 48: 1377-1382.
 
15.
Huang L, Kashiwada Y, Cosentino LM, et al. 3′,4′-Di-o-(−)-camphanoyl-(+)-ciskhellactone and related compounds: a new class of potent anti-HIV agent. Bioorg Med Chem Lett 1994; 4: 593-598.
 
16.
Yu D, Suzuki M, Morris-Natschke SL, Lee KH. Recent progress in the development of Coumarins derivatives as potent anti-HIV agents. Med Res Rev 2003; 23: 322-345.
 
17.
Song A, Zhang J, Lam KS. Synthesis and reactions of 7-fluoro-4-methyl-6-nitro-2-oxo-2h-1-benzopyran-3-carboxylic acid: a novel scaffold for combinatorial synthesis of Coumarins. J Comb Chem 2004; 6: 112-120.
 
18.
Muratović S, Duric K, Veljovic E, et al. Synthesis of biscoumarin derivatives as antimicrobial agents. Asian J Pharm Clin Res 2013; 6: 132-134.
 
19.
Dipankar B, Panneerselvam P, Asish B. Synthesis, characterization and antimicrobial activities of some 2-pyrazoline derivatives. Asian J Pharm Clin Res 2012; 5: 42-46.
 
20.
Egan D, O’Kennedy R, Moran E, et al. The pharmacology, metabolism, analysis, and applications of coumarin and coumarin-related compounds. Drug Metab Rev 1990; 22: 503-529.
 
21.
Agarwal R. Synthesis & biological screening of some novel Coumarine derivatives. Biochem Pharmacol 2000; 6: 1042-1051.
 
22.
Ojala T. Biological screening of plant coumarins. PhD Thesis, University of Helsinki, Helsinki, Finland, 2001.
 
23.
Cooke D, Fitzpatrick B, O’Kennedy R, et al. Coumarine biochemical profile and recent developments. John Wiley & Sons; 1997, p. 311-322.
 
24.
Matos MJ, Santana L, Uriarte E, et al. Coumarins – an Important Class of Phytochemicals [Internet]. In: Phytochemicals – Isolation, Characterisation and Role in Human Health. InTech; 2015. Avail­able from: http://dx.doi.org/10.5772/5998....
 
25.
Kashman Y, Gustafson KR, Fuller RW, et al. HIV inhibitory natural products. Part 7. The calanolides, a novel HIV inhibitory class of coumarin derivatives from the tropical rainforest tree, Calophyl­lum lanigerum. J Med Chem 1992; 35: 2735-2743.
 
26.
Zembower DE, Liao S, Flavin MT, et al. Structural analogues of the calanolide anti-HIV agents. Modification of the trans10, 11-dimethyldihydropyran-12-ol ring (ring C). J Med Chem 1997; 40: 1005-1017.
 
27.
Gaddam S, Khilevich A, Filer C, et al. Synthesis of dual 14C-labeled (+)-calanolide A, a naturally occurring anti-HIV agent. Journal of Labelled Compounds and Radiopharmaceuticals 1997; 39: 901-906.
 
28.
Xu ZQ, Buckheit RW Jr, Stup TL, et al. In vitro anti-human immunodeficiency virus (HIV) activity of the chromanone derivative, 12-oxocalanolide A, a novel NNRTI. Bioorg Med Chem Lett 1998; 8: 2179-2184.
 
29.
Tummino PJ, Ferguson D, Hupe D. Competitive inhibition of HIV-1 protease by warfarin derivatives. Biochem Biophys Res Commun 1994; 201: 290-294.
 
30.
Lunney EA, Hagen SE, Domagala JM, et al. A novel nonpeptide HIV-1 protease inhibitor: elucidation of the binding mode and its application in the design of related analogs. J Med Chem 1994; 37: 2664-2677.
 
31.
Kohl NE, Emini EA, Schleif WA. Active human immune deficiency virus protease is required for viral infectivity. Proc Natl Acad Sci U S A 1988; 85: 4686-4690.
 
32.
McPhee F, Good AC, Kuntz ID, Craik CS. Engineering human immune deficiency virus 1 protease heterodimers as macromolecular inhibitors of viral maturation. Proc Natl Acad Sci U S A 1996; 93: 11477-11481.
 
33.
Seelmeier S, Schmidt H, Turk V, Von Der Helm K. Human immunodeficiency virus has an aspartic-type protease that can be inhibited by pepstatin A. Proc Natl Acad Sci U S A 1988; 85: 6612-6616.
 
34.
Bhargava S, Adhikari N, Amin SA, et al. Hydroxyethylamine derivatives as HIV-1 protease inhibitors: a predictive QSAR modelling study based on Monte Carlo optimization. SAR QSAR Environ Res 2017; 28: 973-990.
 
35.
D’Angelo J, Mouscadet JF, Desmaele D, et al. HIV-1 integrase: the next target for AIDS therapy. Pathol Biol 2001; 49: 237-246.
 
36.
Mazumder A, Wang S, Neamati N, et al. Antiretroviral agents as inhibitors of both human immunodeficiency virus type 1 integrase and protease. J Med Chem 1996; 39: 2472-2481.
 
37.
Zhao H, Neamati N, Hong H, et al. Coumarin-based inhibitors of HIV integrase. J Med Chem 1997; 40: 242-249.
 
38.
Martyanov IV, Zakharova OD, Sottofattori E, et al. Interaction of oligonucleotides conjugated to substituted chromones and cou­marins with HIV-1 reverse transcriptase. Antisense Nucleic Acid Drug Dev 1999; 9: 473-480.
 
39.
Offergeld R, Reinecker C, Gumz E, et al. Mitogenic activity of high molecular polysaccharide fractions isolated from the cuppressaceae Thuja occidentalis L. enhanced cytokine production by thyapolysaccharide, g-fraction (TPSg). Leukemia 1992; 6: 189-191.
 
40.
Gustafson KR. Circulins A and B Novel human immunodeficiency virus (HIV)-inhibitory macrocyclic peptides from the tropical tree Chassalia parvifolia. J Am Chem Soc 1994; 116: 9337-9338.
 
41.
Hallock YF. Cycloviolins A-D, anti-HIV macrocyclic peptides from Leonia cymosa. J Org Chem 2000; 65: 124-128.
 
42.
Bokesch HR, Pannell LK, Cochran PK. A novel anti-HIV macrocyclic peptide from Palicourea condensata. J Nat Prod 2001; 64: 249-250.
 
43.
Au TK, Collins RA, Lam TL, et al. The plant ribosome inactivating proteins luffin and saporin are potent inhibitors of HIV-1 integrase. FEBS Lett 2000; 471: 169-172.
 
44.
Manfredi KP, Blunt JW, Cardellina JHI, et al. Novel alkaloids from the tropical plant Ancistrocladus abbreviatus inhibit cell killing by HIV-1 and HIV-2. J Med Chem 1991; 34: 3402-3405.
 
45.
Karpas A, Fleet GW, Dwek RA, et al. Amino sugar derivatives as potential anti-HIV agents. Proc Natl Acad Sci U S A 1988; 85: 9229-9233.
 
46.
McMormick JL, McKee TC, Cardellino JH, Boyd MR. HIV inhibitory natural products. 26. Quinoline alkaloids from Euodia roxburghiana. J Nat Prod 1996; 59: 469-471.
 
47.
Duan H, Takaishi Y, Imakura Y, et al. Sesquiterpene alkaloids from Tripterigium hypoglaucum and Tripterygium wilfordii: a new class of potent anti-HIV agents. J Nat Prod 2000; 63: 357-361.
 
48.
Ma CM, Nakamura N, Miyashiro H, et al. Screening of Chinese and Mongolian herbal drugs for anti-human immunodeficiency virus type-1 (HIV-1) activity. Phytother Res 2002; 16: 186-189.
 
49.
Tan GT, Pezzuto JM, Kinghorn AD, Hughes SH. Evaluation of natural products as inhibitors of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase. J Nat Prod 1991; 54: 143-154.
 
50.
Meragelman KM, McKee TC, Boyd MR. Anti-HIV prenylated flavonoids from Monotes africanus. J Nat Prod 2001; 64: 546-548.
 
51.
Kim HJ, Woo ER, Shin CG. A new flavonol glycoside gallate ester from Acer okamotoanum and its inhibitory activity against human immunodeficiency virus-1 (HIV-1) integrase. J Nat Prod 1998; 61: 145-148.
 
52.
Lin YM, Anderson H, Flavin MT, et al. In vitro anti-HIV activity of biflavonoids isolated from Rhus succedanea and Garcinia multiflora. J Nat Prod 1997; 60: 884-888.
 
53.
Hu K, Kobayashi H, Dong A. Antifungal, antimitotic and anti-HIV-1 agents from the roots of Wikstroemia indica. Planta Med 2000; 66: 564-567.
 
54.
McKee TC, Covington CD, Fuller R. Isolation and characterization of new anti-HIV and cytotoxic leads from plants, marine and microbial organisms. J Nat Prod 1998; 60: 431-436.
 
55.
Wang Q, Ding ZH, Liu JK, Zheng YT. Xanthohumol, a novel anti-HIV-1 agent purified from hops Humuluslupulus. Antiviral Res 2004; 64: 189-194.
 
56.
Charlton JL. Antiviral activity of lignans. J Nat Prod 1998; 61: 1447-1451.
 
57.
Rimando AM, Pezzuto JM, Fransworth NR, et al. New lignans from Anogeissus acuminata with HIV-1 reverse transcriptase inhibitory activity. J Nat Prod 1994; 57: 904-996.
 
58.
Eich E, Pertz H, Kaloga M, et al. (–)-Arctigenin as a lead structure for inhibitors of human immunodeficiency virus type-1 integrase. J Med Chem 1996; 39: 86-95.
 
59.
Hoang VD. Natural anti-HIV agents-Part-I: (+)-Demethoxyepiexcelsin and verticillatol from Litseaverticillata. Phytochemistry 2002; 59: 325-329.
 
60.
Liul KCSC, Lin MT, Lee SS, et al. Antiviral tannins from two Phyllanthus species. Planta Med 1999; 65: 43-46.
 
61.
Chen DF, Zhang SX, Xie L, et al. Anti-AIDS agents – XXVI. Structure-activity correlations of gomisin-G-related anti-HIV lignans from Kadsura interior and of related synthetic analogues. Bioorg Med Chem 1997; 5: 1715-1723.
 
62.
Liu JS, Li L. Kadsulignans L-N, three dibenzocyclooctadienelignans from Kadsura coccinea. Phytochemistry 1995; 38: 241-245.
 
63.
Ovenden SPB, Yu J, Wan SS, et al. Globoidnan A: a lignan from Eucalyptus globoidea inhibits HIV integrase. Phytochemistry 2004; 65: 3255-3259.
 
64.
Valsaraj R, Pushpangadan P, Smitt UW, et al. New anti-HIV-1, antimalarial, and antifungal compounds from Terminalia bellerica. J Nat Prod 1997; 60: 739-742.
 
65.
Wang JN, Hou CY, Liu YL, et al. Swertifrancheside, an HIV-reverse transcriptase inhibitor and the first flavone-xanthone dimer from Swertia franchetiana. J Nat Prod 1994; 57: 211-217.
 
66.
Cao B, Wang Y, Wen D, et al. A trial of lopinavir–ritonavir in adults hospitalized with severe Covid-19. N Engl J Med 2020; 382: 1787-1799.
 
67.
Rabby MI. Current drugs with potential for treatment of COVID-19: a literature review. J Pharm Pharm Sci 2020; 23: 58-64.
 
68.
Cai Q, Yang D, Liu J, et al. Experimental treatment with favipiravir for COVID-19: an open-label control study. Engineering (Beijing) 2020; 6: 1192-1198.
 
69.
Gordon CJ, Tchesnokov EP, Feng JY, et al. The antiviral compound remdesivir potently inhibits RNA-dependent RNA polymerase from Middle East respiratory syndrome coronavirus. J Biol Chem 2020; 295: 4773-4779.
 
70.
Nguyen TM, Zhang Y, Pandolfi PP. Virus against virus: a potential treatment for 2019-nCov (SARS-CoV-2) and other RNA viruses. Cell Res 2020; 30: 189-190.
 
71.
Lim J, Jeon S, Shin HY, et al. Case of the index patient who caused tertiary transmission of coronavirus disease 2019 in Korea: the application of lopinavir/ritonavir for the treatment of COVID-19 pneumonia monitored by quantitative RT-PCR. J Korean Med Sci 2020; 35: e79. doi: 10.3346/jkms.2020.35.e79.
 
72.
Kliger Y, Levanon EY. Cloaked similarity between HIV-1 and SARS-CoV suggests an anti-SARS strategy. BMC Microbiol 2003; 3: 20. doi: https://doi.org/10.1186/1471-2....
 
73.
Beniac DR, Andonov A, Grudeski E, Booth TF. Architecture of the SARS coronavirus perfusion spike. Nat Struct Mol Biol 2006; 13: 751-752.
 
74.
Lu M, Blacklow SC, Kim PS. A trimeric structural domain of the HIV-1 transmembrane glycoprotein. Nat Struct Biol 1995; 2: 1075-1082.
 
75.
Armand-Ugón M, Gutiérrez A, Clotet B, Esté JA. HIV-1 resistance to the gp41-dependent fusion inhibitor C-34. Antiviral Res 2003; 59: 137-142.
 
76.
Yohei Y, Helenius A. Virus entry at a glance. J Cell Sci 2013; 126: 1289-1295.
 
77.
Zhang XW, Yap YL. Structural similarity between HIV-1 gp41 and SARS-CoV S2 proteins suggests an analogous membrane fusion mechanism. Theochem 2004; 677: 73-76.
 
78.
Blacklow SC, Lu M, Kim PS. A trimeric subdomain of the simian immune deficiency virus envelope glycoprotein. Biochemistry 1995; 34: 14955-14962.
 
79.
Chan DC, Fass D, Berger JM, Kim PS. Core structure of gp41 from the HIV envelope glycoprotein. Cell 1997; 89: 263-273.
 
80.
Freed EO, Delwart EL, Buchschacher GL, Panganiban AT. A mutation in the human immunodeficiency virus type 1 transmembrane glycoprotein gp41 dominantly interferes with fusion and infectivity. Proc Natl Acad Sci U S A 1992; 89: 70-74.
 
81.
Wild C, Dubay JW, Greenwell T, et al. Propensity for a leucine zipper-like domain of human immunodeficiency virus type 1 gp41 to form oligomers correlates with a role in virus-induced fusion rather than assembly of the glycoprotein complex. Proc Natl Acad Sci U S A 1994; 91: 12676-12680.
 
82.
Melikyan GB, Markosyan RM, Hemmati H, et al. Evidence that the transition of HIV-1 gp41 into a six-helix bundle, not the bundle configuration, induces membrane fusion. J Cell Biol 2000; 151: 413-423.
 
83.
Bar S, Alizon M. Role of the ectodomain of the gp41 trans membrane envelope protein of human immunodeficiency virus type 1 in late steps of the membrane fusion process. J Virol 2004; 78: 811-820.
 
84.
Cohen T, Cohen SJ, Antonovsky N, et al. HIV-1 gp41 and TCRα trans-membrane domains share a motif exploited by the HIV virus to modulate T-cell proliferation. PLoS Pathog 2010; 6: 1001085. doi: https://doi.org/10.1371/journa....
 
eISSN:1732-2707
ISSN:1730-1270
Journals System - logo
Scroll to top