

Correlation of copper/zinc ratio with superoxide dismutase activity and neutrophil-to-lymphocyte ratio in human immunodeficiency virus type 1 (HIV-1) infected subjects

Mathias A. Emokpae

Department of Medical Laboratory Science, University of Benin, Benin City, Nigeria

Abstract

Introduction: The important role of nutrition in the pathogenesis of human immunodeficiency virus type-1 (HIV-1) infection has not been sufficiently addressed in sub-Saharan Africa, where the prevalence of HIV infection is high. This study correlates copper-to-zinc ratio with activities of superoxide dismutase and calculated neutrophil-to-lymphocyte ratio in HIV-1-infected subjects.

Material and methods: In the study, there were 120 confirmed HIV-1 positive subjects and 100 HIV-1 negative ambulatory healthy controls. Complete blood count, clusters of differentiation (CD4+) lymphocyte count, serum superoxide dismutase (SOD), catalase, copper, and zinc were evaluated using hematology analyzer, FACS flow cytometer, enzyme-linked immunosorbent assay, and atomic absorption spectrophotometer, respectively. Correlation between the measured variables was completed using Pearson correlation coefficient.

Results: Serum copper ($p < 0.001$), catalase ($p < 0.05$), and neutrophil-to-lymphocyte ratio (NLR) ($p < 0.001$) were significantly higher, while serum zinc ($p < 0.001$) was lower in HIV-1 positive than control subjects. Copper/zinc ratio correlated with SOD ($r = -0.228$; $p < 0.02$), CD4⁺ (-0.235 ; $p < 0.02$), and NLR ($r = 0.198$; $p < 0.05$) in HIV infected subjects.

Conclusions: Copper/zinc ratio correlated with NLR, SOD, and CD4⁺ cell count. Because of the adverse effects associated with imbalance of copper and zinc levels, nutritional status, antioxidant defense mechanism, and inflammatory markers may be assessed periodically in HIV-1-infected patients.

HIV AIDS Rev 2018; 17, 1: 18-23
DOI: <https://doi.org/10.5114/hivar.2017.72278>

Key words: human immunodeficiency virus, copper, zinc, copper-to-zinc ratio, superoxide dismutase.

Introduction

Human immunodeficiency virus type 1 (HIV-1) is a major health challenge all over the world [1, 2], especially in sub-Saharan Africa. The understanding of the biology of HIV

infection had advanced, and the introduction of anti-retroviral therapy has greatly improved the prognosis and reduced mortality of the infected individuals [3]. The vital role of host nutrition in the pathogenesis of HIV infection has not been adequately addressed especially in sub-Saharan

Address for correspondence: Dr. Mathias A. Emokpae, Department of Medical Laboratory Science, University of Benin, 300001 Benin, Nigeria, phone: +2348034511182, e-mail: mathias.emokpae@uniben.edu

Article history:
Received: 23.05.2017
Received in revised form: 07.10.2017
Accepted: 08.10.2017
Available online: 15.11.2017

International Journal
of HIV-Related Problems
**HIV & AIDS
Review**

Africa, where a large population of infected individuals live below poverty level, hence nutritional deficiency is a major challenge that needs to be adequately addressed. The immune function of the human body is largely dependent on nutritional status. Apart from immune-deficiency, which is the hallmark of HIV infection, opportunistic infections [4-6] inflammation and oxidative stress [7] are additional disease burden that underscores the need for adequate nutrition in HIV infection. There are numerous studies that had evaluated serum levels of copper and zinc in individuals with HIV-1 infection [8-12], but evidence of the relationship between copper/zinc ratio with markers of inflammation, disease progression, and antioxidant enzymes are scarce in our setting.

The use of copper/zinc ratio as an important inflammatory and nutritional marker has been advocated and in fact used to predict all-cause mortality in several disease conditions. An increase in the serum copper/zinc is a non-specific reaction to inflammation. It was suggested that the serum copper/zinc ratio is clinically of utmost importance because it constitutes a tool to establish disease severity in chronic illnesses [13, 14]. Serum copper and zinc are regulated by metallothioneins such that when copper level decreases, zinc level will increases, and vice versa. Their levels in the body are lower in several disease conditions [15] and are not disease specific, but follow a pattern of metabolism [16]. The interpretation of individual trace element level may be problematic because their levels in serum may not reflect their cellular status due to homeostasis control mechanism. Therefore, the ratio may be preferred to better indicate their levels in clinical practice [17].

Neutrophil-to-lymphocyte ratio (NLR) is used as a marker of sub-clinical inflammation [18], and for general immune response to various stimuli including HIV infection, sickle cell anemia [19], and cancers [20-22]. Neutrophil-to-lymphocyte ratio was reported to be associated with severity of clinical progress in severely ill patients [23]. In this study, we used NLR as marker of inflammation in HIV-1-infected subjects.

Superoxide dismutase (SOD) and catalase are enzymes that belong to the anti-oxidant defense systems, helping to scavenge free radicals generated in the body that could cause damage to biomolecules. The antioxidant defense system is extensive and made up of several steps that protect against free radicals at different sites [24]. This study seeks to evaluate the activities of SOD and catalase, levels of clusters of differentiation (CD4⁺), serum copper, zinc, and calculated NLR in HIV-1-infected subjects and correlates their levels/activities with copper/zinc ratio.

Material and methods

This is cross-sectional, case-control, and laboratory-based study of confirmed HIV-1-infected and healthy control subjects. The study participants who were consecutively recruited included 120 confirmed HIV-1 positive individuals (40 males with mean age of 32.9 ± 0.4 years, and 60 fe-

males with mean age of 30.5 ± 0.4 years), and 100 HIV-1 negative (apparently healthy) individuals recruited among staff and students of our institution (controls, 40 males with mean age of 32.6 ± 0.3 years, and 60 females with mean age of 31.9 ± 0.2 years).

Inclusion and exclusion criteria

All HIV-1 positive subjects registered at the HIV clinic of Central Hospital, Benin City, Nigeria and willing to participate in the study were included. All hemolyzed samples, patients with lymphoma, rheumatoid arthritis, ulcerated colitis, celiac, Menkes syndrome, and Wilson's disease were excluded.

Ethical consideration

The research protocol was reviewed and approved by the Ethics and Research Committee of the Edo State Ministry of Health (ethical code HM.1208/112, dated 12th May, 2016).

Informed consent was obtained from all participants and utmost confidentiality of information was maintained.

Specimen collection and analytical methods

Six milliliters of blood sample was collected by venous puncture; 3 ml was dispensed into a plain tube, while the remaining 3 ml was emptied into bottle containing ethylene diamine tetra-acetic acid (EDTA). The sample in the plain container was allowed to clot at room temperature. The clotted sample was centrifuged at 3000 rpm for 10 min, and the serum was separated and kept frozen at -20°C until analyzed. The serum SOD and catalase (CAT) were assayed by enzyme linked immunosorbent assay (ELISA) technique using reagent kits supplied by Wkea Med Supplies Corp., Changchun, China. The experiments were completed according to the manufacturer's protocol.

The complete blood count and CD4⁺ count were assayed using the Coulter counter hematology analyzer (CELL DYE 3700, Abbott Diagnostics, Wiesbaden, Germany) and fluorescence activated cell sorter (FACS flow cytometer) count system, Lincolnshire, IL, USA, respectively. The NLR was calculated by dividing the value of absolute neutrophil count by absolute lymphocyte count obtained from complete blood count. Serum copper and zinc levels were measured using atomic absorption spectrophotometer (Atomic Absorption spectrophotometer AA-680, Shimadzu, Japan). Both test and standard concentrations were read in duplicate, and their mean values were used for statistical comparison.

Statistical analysis

The data obtained from this study were analyzed using SPSS version 21 (SPSS Inc., Chicago, IL, USA) for Windows. The mean levels of measured variables and enzymes activi-

Table 1. Levels of copper, zinc, copper/zinc ratio and anti-oxidant enzymes in HIV-1-positive subjects compared with controls

Measured parameters	HIV-1-positive subjects (n = 120)	HIV-1-negative control subjects (n = 100)	p-value
Serum catalase (µg/l)	14.9 ± 0.85	11.5 ± 0.05	0.05
Serum SOD (ng/ml)	1.61 ± 0.01	1.81 ± 0.02	0.001
Serum copper (µg/dl)	165.6 ± 2.1	141.1 ± 2.4	0.001
Serum zinc (µg/dl)	77.5 ± 1.9	96.5 ± 1.5	0.001
Copper/zinc ratio	2.12 ± 0.02	1.45 ± 0.03	0.001

SOD – superoxide dismutase

Table 2. Comparison of complete blood count, CD4⁺ cell count, and neutrophil-to-lymphocyte level between HIV-1-positive and HIV-1-negative subjects

Measured parameters	HIV-1-positive subjects	HIV-1-negative subjects	p-Value
PCV (%)	35.5 ± 0.32	38.8 ± 0.50	0.001
Hb (g/dl)	11.8 ± 0.10	13.7 ± 0.09	0.001
Total WBC (x 10 ⁹ /l)	5.8 ± 0.11	4.9 ± 0.15	0.001
Platelet count (x 10 ⁹ /l)	262.0 ± 7.5	307 ± 8.5	0.01
Neutrophil (x 10 ⁹ /l)	3.75 ± 0.09	2.51 ± 0.08	0.001
Lymphocyte (x 10 ⁹ /l)	1.93 ± 0.05	2.14 ± 0.07	0.005
NLR	1.93 ± 0.01	1.16 ± 0.02	0.001

PCV – packed cell volume, Hb – hemoglobin, WBC – white blood cell, NLR – neutrophil-to-lymphocyte ratio

ties were compared between cases and controls, while copper/zinc ratio was correlated with NLR, SOD, catalase, and CD4⁺ cell count of HIV-1-infected subjects using Pearson's correlation coefficient. A *p*-value < 0.05 was considered statistically significant.

Results

Table 1 shows the levels of copper, zinc, copper/zinc ratio and antioxidant enzymes compared between HIV-1-infected subjects and controls. Serum copper (*p* < 0.001), catalase (*p* < 0.05), and calculated copper/zinc ratio (*p* < 0.001) were significantly higher, while SOD and zinc level were significantly lower (*p* < 0.001) in HIV-1-infected adults than control subjects.

The packed cell volume (*p* < 0.001), hemoglobin (*p* < 0.001), platelet count (*p* < 0.01), and absolute lymphocyte count (*p* < 0.05) were significantly lower, while total white blood cell count, absolute neutrophil count, and calculated NLR were significantly higher (*p* < 0.001) in cases than controls (Table 2).

Table 2 shows that copper/zinc ratio correlate negatively with SOD (*r* = -0.228; 0.02) and CD4 (*r* = -0.235; *p* < 0.02), while NLR (0.198; *p* < 0.05) correlated positively in HIV-1 positive subjects. However, the correlation between copper/zinc ratio and catalase activity was not statistically significant.

Discussion

Serum copper and zinc play important roles in immunophysiological functions of the human body [6, 25, 26]. Zinc is a co-factor for several enzymes and play critical roles in nucleic acid metabolism, cell replication, tissue repair, and growth. Copper on the other hand, is present in cytosolic erythrocyte superoxide dismutase (Cu, Zn SOD), which is an important antioxidant against superoxide radical. Deficiency in their levels may lead to changes in thymic function with resultant depletion of immunity, inflammation, and increased susceptibility to infectious diseases [25-27].

We observed significantly lower level of zinc, higher level of copper as well as elevated levels of calculated copper/zinc ratio and NLR in HIV-1-infected subjects than controls. The elevated level of copper/zinc ratio correlated with CD4⁺ count, SOD, and NLR.

The observed higher level of copper coupled with lower level of zinc in HIV-1-infected subjects is consistent with previous studies [8, 28-32]. Whereas Neil *et al.* [32] reported a significantly higher mean copper levels than controls, Khalili *et al.* [33] observed significantly lower zinc levels in HIV-infected subjects than controls. A significantly higher level of copper, regardless of gender, was also reported by Moreno *et al.* [34]. The authors suggested that copper may be used as a surrogate marker of inflammatory diseases. This observation was faulted by some authors who supposed

Table 3. Correlation of copper-to-zinc ratio with antioxidant enzymes and neutrophil-to-lymphocyte ratio in HIV-1-positive subjects

Correlated variables	R-value	p-value
Cu/Zn ratio/neutrophil-to-lymphocyte ratio	0.198	0.05
Cu/Zn ratio/catalase	0.167	0.10
Cu/Zn ratio/superoxide dismutase	-0.228	0.02
Cu/Zn ratio/CD4 ⁺ cell count	-0.235	0.02

that copper levels are not good markers of inflammatory response because its concentration appears to reflect interactions among different pathological processes [35]. Copper participates in low-density lipoprotein-cholesterol (LDL-c) oxidation within artery walls, deficiency, and over-consumption of copper can lead to atherogenesis [36, 37]. HIV-1 infection could adversely impact nutritional status either by reduced food intake, impair absorption, and/or increasing utilization of nutrients [8]. Arinola *et al.* [28] attributed their finding of elevated copper level to the use of unregimented measure in the treatment of diseases in their environment. They suggested that most HIV-infected individuals seek all forms of unorthodox treatment such as herbs and dietary advice [8]. Low levels of zinc have long been reported to lower lymphocyte concentration [38-40]. The imbalance in zinc and copper concentrations (high copper/zinc ratio) in HIV infection are caused by impair utilization of zinc due to perturbation in protein synthesis, decreased intestinal absorption, and muscle wasting associated with HIV infection. Pinolic acid, a derivative of tryptophan metabolism acts as zinc binding ligand, and facilitates its absorption and distribution in the body [11].

Micronutrients deficiency is common in sub-Saharan Africa, and may be a contributing factor to weakening immune status and thus, exacerbating clinical manifestation of HIV-1 infection [41]. Micronutrients (particularly copper and zinc) are important modulators of immunity and could modify the risk of infection [42, 43]. The higher levels of copper observed in HIV-1-infected subjects may indicate a non-specific increase of copper-binding protein caeruloplasmin [44, 45]. Plasma concentrations of caeruloplasmin and copper may increase as an acute-phase response in several infectious diseases and inflammatory conditions [46]. The higher copper/zinc value, as observed in this study, is consistent with that of Malviya *et al.* [3]. They observed a significantly negative correlation between copper/zinc ratio with CD4 cell count. The copper/zinc ratio increased with decreasing concentration of CD4 cell count, while zinc level decreased with decreasing concentration of CD4 cell count. Some authors have utilized copper/zinc ratio for the clinical evaluation of zinc deficiency in several diseases [47]. In a study of HIV-positive homosexual men, it was concluded that copper/zinc ratio > 1.0 may be associated with increased mortality [48].

It was therefore suggested that the ratio may be used to predict patient survival and disease progression in HIV patients [48]. Results from our study tend to support possible use of copper/zinc ratio as a useful marker of HIV activity and disease progression.

Copper/zinc ratio correlated positively with NLR ratio, which may indicate the presence of subclinical inflammation in HIV-1 infection. A higher NLR was used as a predictor of cardiovascular (CVD) risk in HIV-infected individuals, independently of other traditional CVD risk factors [49], predictor of mortality for non-AIDS defining cancer, and for non-Hodgkin lymphoma in HIV-infected subjects [50, 51]. HIV infection is a disease associated with chronic inflammation and increased levels of inflammation; immune activation and endothelial dysfunction biomarkers have been reported [52, 53]. Neutrophil-to-lymphocyte ratio is an emerging marker of systemic inflammation, which had been observed to predict mortality in many disease conditions [54, 55].

Copper/zinc ratio correlated negatively ($r = 0.228$; $p < 0.02$) with SOD, while a non-significant correlation was observed with catalase. This indicates that copper/zinc ratio increased with decreasing activity of SOD in this study. Zinc and copper act as co-factors for SOD, an important antioxidant enzyme. Imbalance of these trace elements in the body may affect the enzyme activity. This observation was verified by other authors [56]. Such imbalance can contribute to oxidative stress, an imbalance in the generation of free radical and availability of antioxidant protection mechanism, and a situation that can compromise immune system and worsened by HIV-1 infection [57, 58].

Conclusions

This study observed higher calculated copper/zinc ratio, NLR, serum copper, and lower serum zinc levels in HIV-1-infected subjects than controls. Copper/zinc ratio correlated with NLR, SOD, and CD4⁺ cell count. HIV-1 infection and associated adverse effects of higher copper/zinc ratio underscore the need to evaluate and monitor the nutritional status, antioxidant defense mechanism, and inflammatory markers periodically in this patients. If the imbalance is corrected, it may help to stop disease progression, improve immunity, and reduce inflammation.

Acknowledgements

We would like to thank the study participants, clinical and laboratory staff of Central Hospital, Benin City for their contributions towards completion of this study.

Conflict of interest

The author's declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

References

- Allard JP, Aghdassi E, Chau J, et al. Oxidative stress and plasma antioxidant micronutrients in humans. *Am J Clin Nutr* 1998; 67: 143-147.
- Abrams B, Duncan D, Hertz-Pannier I. A prospective study of dietary intake and acquired immune deficiency syndrome in HIV seropositive homosexual men. *J Acquir Immune Defic Syndr* 1993; 6: 949-958.
- Malviya A, Hassan H, Hussain A. Correlation of CD4+T cell count with serum zinc, copper, and selenium in HIV positive individuals. *Internat J Epidemiol* 2008; 6: 1-6.
- Kassu A, Yabutani T, Mahmud ZH, et al. Alterations in serum levels of trace elements in tuberculosis HIV infection. *Eur J Clin Nutr* 2006; 60: 580-586.
- Roy SK, Raqib R, Khatun W, et al. Zinc supplementation in the management of shigellosis in malnourished children in Bangladesh. *Eur J Clin Nutr* 2004; 62: 849-855.
- Amare B, Tafess K, Moges F, et al. Levels of Serum Zinc, Copper and Copper/Zinc Ratio in Patients with Diarrhea and HIV Infection in Ethiopia. *Vitam Trace Elem* 2011; 1: 101.
- Emokpae MA, Mrakpor BA. Do Sex Differences in Respiratory Burst Enzyme Activities Exist in Human Immunodeficiency Virus-1 Infection? *Med Scis* 2016; 4: 1-8.
- Akinjinmi AA, Akingbade OA, Okerentugba PO, et al. Evaluation of selenium and zinc levels in seropositive HIV individuals in a tertiary Hospital in Osogbo, Osun State Nigeria. *Academ Arena* 2013; 5: 17-21.
- Elatif MA, Hassan EE, Bakhit SM, et al. Assessment of plasma zinc and copper levels among Sudanese HIV patients in Khartoum state. *Int J Adv Pharm Biol Chem* 2014; 3: 395-399.
- Drain PK, Kupka R, Mugusi F, et al. Micronutrients in HIV positive persons receiving highly active antiretroviral therapy. *Am J Clin Nutr* 2007; 85: 333-345.
- Ibeh IN, Nwokenna US. Studies on cations as biomarkers of mammalian immunity: prospects in disease control. *J Natl Acad Adv Sci* 2003; 2: 89-109.
- Kupka R, Msamanga GI, Spiegelman D, et al. Selenium status is associated with accelerated HIV disease progression among HIV-1-infected pregnant women in Tanzania. *J Nutr* 2004; 134: 2556-2560.
- Mao S, Huang S. Zinc and copper levels in bladder cancer: a systematic review and meta-analysis. *Biol Trace Elem Res* 2013; 153: 5-10.
- Poo JL, Romero RR, Robles JA, et al. Diagnostic value of copper/zinc ratio in digestive cancer: a case control study. *Arch Med Res* 1997; 28: 259-263.
- Ibeh IN, Nwokenna US, Onemu S, et al. Studies on disease markers in a Nigerian community. *Natl J Sci* 2002; 1: 20-25.
- Malapati BR, Nadeem DR, Patel B, et al. Serum zinc and copper levels in HIV positive patients. *Eur J Pharmaceut Med Res* 2015; 2: 265-270.
- Osredkar J, Sustar N. Copper and zinc, biological role and significance of copper/zinc imbalance. *J Clin Toxicol* 2011; 5: 3.
- Minardi D, Scartozzi M, Montesi L, et al. Neutrophil-to-lymphocyte ratio may be associated with the outcome in patients with prostate cancer. *Springer Plus* 2015; 4: 255.
- Emokpae MA, Aruomaren A, Osime E. Relationship between Neutrophil-to-Lymphocyte Ratio and Inflammatory Markers in Sickle Cell Anaemia Patients with Proteinuria. *Med Sci* 2016; 4: 1-8.
- Pinato DJ, Stavraka C, Flynn MJ, et al. An inflammation-based score can optimize the selection of patients with advanced cancer considered for early phase clinical trial. *PLoS One* 2014; 1-10: e83279.
- Li MX, Liu XM, Zhang XF, et al. Prognostic role of neutrophil-to-lymphocyte ratio in colorectal cancer: a systematic review. *Int J Cancer* 2014; 134: 2403-2413.
- Grivennikov SI, Greten FR, Karin M. Immunity, inflammation and cancer. *Cell* 2010; 140: 833-899.
- Zahorec R. Ratio of neutrophil to lymphocyte count – rapid and simple parameter of systemic inflammation and stress in critically ill. *Bratisl Lek Listy* 2001; 102: 5-14.
- Uadias PO, Emokpae MA. Implications of Oxidative Stress on Male Infertility. *Transaction of the Nigerian Society of Biochemistry and Molecular Biology* 2015; 1: 19-29.
- Failla ML. Trace elements and host defense: recent advances and continuing challenges. *J Nutr* 2003; 133: 1443S-1447S.
- Stern BR, Solioz M, Krewski D, et al. Copper and Human Health: biochemistry, genetics, and strategies for modeling dose-response relationships. *J Toxicol Environ Health B Crit Rev* 2007; 10: 157-222.
- Tomkins A. Assessing micronutrient status in the presence of inflammation. *J Nutr* 2003; 133: 1649S-1655S.
- Arinola OG, Adedapo KS, Kehinde AO, et al. Acute phase proteins, trace elements in asymptomatic human immunodeficiency virus infection in Nigerians. *Afr J Med Med Sci* 2004; 33: 317-322.
- Semba RD, Caiaffa WT, Graham NM, et al. Vitamin A deficiency and wasting as predictors of mortality in human immunodeficiency virus-infected injection drug users. *J Infect Dis* 1995; 171: 1196-1202.
- Coodley GO, Coodley MK, Nelson HD, et al. Micronutrient concentrations in the HIV wasting syndrome. *AIDS* 1993; 7: 1595-1600.
- Kupka R, Msamanga GI, Donna S, et al. Selenium status is associated with accelerated HIV disease progression among HIV-1-infected pregnant women in Tanzania. *J Nutr* 2004; 134: 2556-2560.
- Graham NM, Sorensen D, Odaka N, et al. Relationship of serum copper and zinc levels to HIV-1 seropositivity and progression to AIDS. *J Acquir Immuno Defic Syndr* 1991; 4: 976-980.
- Khalili A, Soudabkhsh A, Hajiabdolbaghi M, et al. Nutritional status and serum zinc and selenium levels in Iranian HIV infected individuals. *BMC Infect Dis* 2008; 8: 165.
- Moreno T, Artacho R, Navarro M, et al. Serum copper concentration in HIV-infection patients and relationships with other biochemical indices. *Sci Total Environ* 1998; 217: 21-26.
- Ucar SK, Coker M, Sözmen E, et al. An association among iron, copper, zinc, and selenium, and antioxidative status in dyslipidemic pediatric patients with glycogen storage disease types IA and III. *J Trace Elem Med Biol* 2010; 24: 42-45.
- Ferns GA, Lamb DJ, Taylor A. The possible role of copper ions in atherosclerosis: the Blue Janus. *Atherosclerosis* 1997; 133: 139-152.
- Mazur A, Gueux E, Bureau I, et al. Copper deficiency and lipoprotein oxidation. *Atherosclerosis* 1998; 137: 443-445.
- Ferencik M, Ebringer L. Modulatory effects of selenium and zinc on the immune system. *Folia Microbiol (Praha)* 2003; 48: 417-426.
- Fraker PJ, King LE, Laakko T, et al. The dynamic link between the integrity of the immune system and zinc status. *J Nutr* 2000; 130: 1399S-1406S.
- Percival SS. Copper and immunity. *Am J Clin Nutr* 1998; 67: 1064S-1068S.
- Fawzi W. Micronutrients and human immunodeficiency virus type 1 disease progression among adults and children. *Clin Infect Dis* 2003; 37: S112-S116.
- Abdulla M. Trace elements and free radicals in health and disease: Essential and Toxic Trace Elements in Human Health and Disease. Alan R. Liss, New York 1998; p. 277-292.
- Chandra RK. Effect of vitamin and trace-element supplementation on immune responses and infection in elderly subjects. *Lancet* 1992; 340: 1124-1127.
- Beisel WR. Metabolic responses of the host to infections: Textbook of pediatric infectious diseases. WB Saunders Co, Philadelphia 1998; p. 34-40.
- Olivares M, Uauy R. Copper as an essential nutrient. *Am J Clin Nutr* 1996; 63: 791S-96S.
- Bogden JD, Kemp FW, Han S, et al. Status of selected nutrients and progression of human immunodeficiency virus type 1 infection. *Am J Clin Nutr* 2000; 72: 809-815.

47. Bogden JD, Baker H, Frank O, et al. Micronutrient status and immunodeficiency virus (HIV) infection, micronutrients and immune function: cytokines and metabolism. *Ann NY Acad Sci* 1990; 58: 189-195.
48. Lai H, Lai S, Shor-Posner G, et al. Plasma zinc, copper, and mortality in HIV-1 infected homosexual men. *Int Conf AIDS* 1998; 12: 34-35.
49. Quiros-Rolden E, Raffetti E, Donato F, et al. Neutrophil to lymphocyte ratio and cardiovascular disease incidence in HIV-infected patients: a population-based cohort study. *PLoS One* 2016; 11: 1-11.
50. Raffetti E, Donato F, Pezzoli C, et al. Systemic Inflammation-Based Biomarkers and Survival in HIV-Positive Subjects With Solid Cancer in an Italian Multicenter Study. *J Acquir Immune Defic Syndr* 2015; 69: 585-592.
51. Raffetti E, Donato F, Castelnuovo F, et al. The prognostic role of systemic inflammatory markers on HIV-infected patients with non-Hodgkin lymphoma, a multicenter cohort study. *J Transl Med* 2015; 13: 89.
52. Tenorio AR, Zheng Y, Bosch RJ, et al. Soluble markers of inflammation and coagulation but not T-cell activation predict non-AIDS-defining morbid events during suppressive antiretroviral treatment. *J Infect Dis* 2014; 210: 1248-1259.
53. Ross AC, Rizk N, O'Riordan MA, et al. Relationship between inflammatory markers, endothelial activation markers, and carotid intima-media thickness in HIV-infected patients receiving antiretroviral therapy. *Clin Infect Dis* 2009; 49: 1119-1127.
54. Benites-Zapata VA, Hernandez AV, Nagarajan V, et al. Usefulness of neutrophil-to-lymphocyte ratio in risk stratification of patients with advanced heart failure. *Am J Cardiol* 2015; 115: 57-61.
55. Park JJ, Jang HJ, Oh IY, et al. Prognostic value of neutrophil to lymphocyte ratio in patients presenting with ST-elevation myocardial infarction undergoing primary percutaneous coronary intervention. *Am J Cardiol* 2013; 111: 636-642.
56. Pugliese C, Patin RV, Palchetti CZ, et al. Assessment of antioxidants status and superoxide dismutase activity in HIV-infected children. *Braz J Infect Dis* 2014; 18: 481-486.
57. Dworkin BM. Selenium deficiency in HIV infection and the acquired immunodeficiency syndrome (AIDS). *Chem Biol Interact* 1994; 91: 181-186.
58. Seifried HE, Anderson DE, Sorkin BC, et al. Free radicals: the pros and cons of antioxidants. American Society for Nutritional Sciences. *J Nutr* 2004; 134: 3143-3163.