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Abstract

Introduction: Human immunodeficiency virus (HIV)/acquired immunodeficiency syndrome (AIDS) 
and its’ damage are prevailing at a shocking level in the world, and tuberculosis (TB) also adds to 
this damage, which make things “Mumps on the  Goiter”. In this case, highly active antiretroviral 
treatment (HAART) plays a great role in reducing the damage, and it is a lifetime treatment to reduce 
HIV-related mortality and morbidity, and prolong patients’ survival time. 
Material and methods: A retrospective survival study was conducted among 407 HIV-positive TB 
co-infected patients under HAART to observe the effects of HAART treatment and other covariates 
for the  improvement of  patient’s life expectancy. Appropriate survival model was selected using 
AIC, BIC, and log-likelihood values.  
Results: Out of the total 407 patients, 120 (29.48%) experienced the event of interest. A majority 
(n  =  74, 61.67%) of  those who died of  HIV/TB co-infection were males, 108 (90%) had pulmo-
nary TB, and 12 (10%) patients suffered from extra-pulmonary TB. For the log-normal AFT model, 
mari tal status, WHO clinical stages, functional status, antiretroviral treatment (ART) regimen, reli-
gion, sqrt CD4+, and baseline CD4+ were among significant predictors at a 5% level of significance 
for the change in patient's lifetime. 
Conclusions: From this study, AFT models presented a better fit compared with Cox regression model. 
Among AFT models, the  log-normal AFT model was selected, and hence, the  study showed that 
prognostic factors, such as WHO clinical stages, functional status, sqrt CD4+ counts, ART regimen, 
marital status, baseline CD4+ counts, and their interactions with time, were among the significant 
predictors for the selected model at 5% significance level. 
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ORIGINAL pApeR 

Introduction 
Human immunodeficiency virus (HIV) and tuberculo-

sis (TB) are the  most prevalent communicable diseases in 
the  world, especially in sub-Saharan African countries in-
cluding Ethiopia, mostly because of unsafe sex and contact 

with airborne droplets, so-called droplet nuclei for tubercu-
losis (TB). Distribution rate of  both HIV and TB diseases 
and their damages has reached a shocking level. HIV is the 
most important risk factor for developing active TB, and  
TB is the leading cause of HIV-related deaths in the world, 
especially in African countries, which made things “Mumps 
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of  HIV/TB co-infected patients using survival estimation 
models with required steps, and the association of TB and 
HIV-related mortality as well as to identify the determinants 
of mortality among HIV/TB co-infected patients in Debre 
Berhan Referral Hospital (DBRH) in Ethiopia. 

Material and methods 
Study population 

Study population included all HIV/TB co-infected pa-
tients under HAART, who were diagnosed with TB disease 
in the Referral Hospital. Therefore, all HIV/TB co-infected 
patients in DBRH, with ages above 18 years old during 
the startup of their HAART since 2005, and those individ-
uals treated for TB during HAART initiation or afterwards, 
up to December, 2016 were included in the current study. 

Ethical consideration permission to undertake this study 
was obtained from Ethical Review Board of the Debre Berhan 
University College of  Natural and Computational Science 
during attending the authors’ MSc degree at this university. 
An official letter of permission and co-operation was writ-
ten by Statistics Department to the DBRH, and the ethical 
committee of  the  hospital allowed for patients data to be  
analyzed. Any personal information regarding study subjects 
were replaced by a number and patients’ evidence was kept 
confidential after data collection from clinical charts. Train-
ing on the objectives of the study was provided to the data 
collector to gather data accurately and honestly. 

Study design 

This was a retrospective cohort study conducted among 
407 HIV-infected TB patients (using the survival data sam-
ple size determination rule), treated in the hospital between 
January 1, 2005 and December 30, 2016. Study design was 
employed as a part of advanced clinical monitoring of ART 
with a time-to-event/death study design to obtain a reason-
able estimate of prognostic covariates of HIV/TB co-infected 
patients included in the  study. All patients who started 
HAART on or after January 1, 2005 were included. Data 
collection from ART database and chart review were done 
retrospectively for all ART-experienced and TB patients. All 
data collection was performed after obtaining ethical clear-
ance from regulatory organizations. In case of time-to-event 
data, survival data analysis was applied to compare survival 
patterns of  HIV/TB co-infected patients due to long effect 
of  HAART drugs. Adjusted effects of  different prognostic 
factors on time-to-event/death were generated using Cox PH 
and/or AFT models. 

Source of data 

Using a standardized data collection format, data of 407 
HIV/TB co-infected patients who were under HAART were 
obtained from the DBRH and analyzed in this study. Study 
population consisted of  all HIV/TB co-infected patients, 

on the  Goiter”. Therefore, the  relation between TB/HIV 
co-infection is bi-directional and synergistic. Compar-
ing people with HIV and without HIV, HIV-positives are 
15-22 times more likely to develop TB [1]. The  expansion 
of  the  two epidemics has become a burning issue globally, 
and is accountable for economic, social, and health crises 
in many developing countries. Out of the worldwide infec-
tious diseases, HIV is the first and TB is the second leading 
cause of death [2]. TB remains a major cause of death/ illness 
of people living with HIV/acquired immunodeficiency syn-
drome (AIDS) [3]. 

Out of 10 million TB incidence cases estimated in 2019 
globally, people living with HIV accounted for 0.82 million 
(8.2%) of  all new TB cases, and of  1.2 million TB-related 
deaths, 0.984 (8.2%) million deaths resulted from TB disease 
among HIV-positive individuals [1]. 

In the African continent, out of an estimated 1.5 million 
deaths from TB, 214,000 (14.30%) were HIV-positive TB pa-
tients, as stated in the WHO TB online 2021 report. More-
over, among sub-Saharan African countries and in Ethiopia 
alone, TB was the cause of 26,000 deaths, out of which 4,000  
(15.4%) were HIV-positive patients. Ethiopia has the 10th 
highest TB burden those refers the 22 high burden countries, 
which accounts for 87% of global TB cases in the world [4, 5]. 

As shown in a research report from Ethiopia, from June, 
2015 to June, 2017, out of the total 1,830,880 HIV-positive 
patients who received HIV care, 1,685,303 (92.05%) were 
screened for TB, and 14,152 (0.84%) were found with active 
form TB. As compared with the Amhara region, TB preva-
lence rate among HIV patients was 0.6%, and the highest TB 
prevalence among all HIV-positive patients was found in  
Somali (14.5%), followed by Gambella (9.6%), and Afar 
(8.5%). In addition, the  lowest TB prevalence was seen in 
Amhara (0.6%) and Oromia (0.7%) [6]. 

For more than 4 decades, world scientists are working 
intensely to find a  pharmaceutical cure for HIV; however, 
till now, no efficient medicine has been found. Therefore, 
the possible way to treat HIV-positive patients is highly active 
antiretroviral therapy (HAART) that can improve the  sur-
vival of HIV/AIDS patients by increasing CD4+ cell counts. 
It was proven that HAART increases the  survival of  HIV/
TB co-infected patients and reduces their mortality [7]. 
Studies of Alemu et al. [8] and Tiruneh et al. [9] confirmed 
that if HIV/AIDS patients take ART, it enables them to re-
duce the  risk of  developing active TB disease. WHO also 
recommends that all TB patients with HIV should be started 
on antiretroviral therapy (ART), irrespective of their CD4+ 
counts [10], and this survival time of  patients was often 
studied by using non-parametric and parametric survival 
models, including Kaplan-Meier, Cox PH, and AFT models. 

Many researchers identify the  survival time of  co- 
infected patients taking HAART with survival models. In 
case of survival analysis, time-to-event (survival time) end-
points can be applied, showing one-time event of  interest. 
From the  literature, there was a  gap in following the  re-
quired steps in analyzing survival data. Therefore, the pri-
mary objective of this study was to evaluate the survival time 
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who were started on ART at any time between January 1, 
2005 and December 30, 2016. A retrospective data collection 
method was applied to collect all patients’ epidemiological, 
laboratory, and clinical information obtained from ART in-
take forms, lab requests, follow-up forms, anti-TB record 
forms, ART database, and ART follow-up charts. 

Variables used in the study 

Response variable 

The outcome variable considered in this study was 
time-to-event/death (survival time of patients) measured in 
months from the date of  starting ART to the date of death. 
Time-to-event/death was defined as the time-to-event/death 
from HIV/TB co-infection and the status of an event (event or 
censored). Status of an event was the possible value of an event 
with two categories: either event/death or censored. Time-to-
event (event of  interest) was defined as the  number of  days, 
months, and years from the date of enrollment to ART clinic 
until the events of interest (event/death) occurred. Censoring 
was a condition, in which the value of a measurement or event 
or observation was only partially known due to the occurrence 
of "dropped out", transferred out to other health care centers, 
lost to follow-up, and "end of study". This was computed as 
the  time difference between the  time of ART initiation and 
the  event of  death occurred. The  event “Death” other than 
HIV/TB co-infection disease was considered as censoring. 

Independent variables 

To meet the objectives of the study, independent variables 
were assessed at baseline, and included age, baseline CD4+ 
count, sex, residence, religion, CD4+ count, employment 
status, time (in months), alcohol consumption, marital sta-
tus, WHO clinical stage, ART regimen, smoking status, edu-
cation, type of  TB, body mass index (BMI), and functional 
status of patients. 

Method of time-to-event/ 
death data analysis 

Survival analysis of time-to-event data was used to ana-
lyze data, in which the  interest was the  time to an  event.  
It was necessary to correctly choose an  appropriate time 
origin to determine time-to-event, which had to be easily 
identified for all patients. In a medical context, a single time-
to-event was usually the time to recurrence of a health con-
dition, time of response to treatment, or time to death from 
a certain cause that can be measured in years, months, weeks, 
or days. In this study, death as an event was considered. 

Survival data often differ from other quantitative records, 
because of incomplete observations. Incomplete data resulted 
from only knowing an event that has not occurred in a given 
time period, and not knowing if or when the  event would 
occur afterwards. These kind of  observations are referred 
to as censored observations. Censoring is the most import-

ant characteristic that distinguishes the analysis of  survival 
times from other areas in statistics. Subjects are said to be 
censored if they incomplete information about their survival 
time due to loss to follow-up, withdrawing from the  study, 
or if the  study ends before all subjects experience an event 
of interest. Mostly, there are three types of censorings: right 
censoring, left censoring, and interval censoring [11]. 

Right censoring: It happens when the  true observed 
event has occurred to the right of our censoring time. Right 
censoring is the  most common type of  censoring, which  
occurs when an observation is terminated before a person 
experience event of interest. In right censoring, only the low-
er bound of the time of interest is known. 

Left censoring: This appears when the event of censor-
ing has occurred prior to the start of a study. In left censor-
ing, only the upper bound for the time of interest is known.  
It is the  least common type of  censoring, which happens 
when an event is known to happen before the start of a study, 
but the exact time is unknown. 

Interval censoring: Interval censoring is considered 
when the event of  censoring is only known to occur with-
in a  certain interval of  time. This can happen if a  patient 
survives through the  experiment and is still alive when at 
the end of a study. It is a slightly less common type of censor-
ing, where an individual is known to have an event between 
two points in time, but the exact time is unknown. 

Descriptive analysis of  survival data mostly uses non- 
parametric methods to compare survival functions and haz-
ard rate of  two or more groups. In this case, Kaplan-Meier 
estimator (product-limit-estimator) proposed byKaplan and 
Meier [11] is commonly used to estimate the survival func-
tion and hazard rate of an individual among groups. We have 
discussed the  survival function and hazard rate as well as 
their estimation method the so called Kaplan-Meier estima-
tion as follows. 

Survival function (S(t)) 

Survival function (S(t)) is a  decreasing step function 
having jumps on the  occurrence of  an  event, and gives 
the probability that an individual would survive beyond any 
specified time t; it indicates the proportion of individuals, for 
which the event of interest has not yet happened by time t. 
Assuming T is a random variable representing survival time, 
which has some cumulative distribution function, F(t). S(t) 
is defined as the probability that an individual survives lon-
ger than t, where S (T = t) = P (an individual survives lon-
ger than t) = P (T > t) = 1 – P (an individual fails before t)  
= 1 – F(t) =1 – p (T < t) = 1 –                              or 1 –                            and 
takes values in between [0, 1], which equals to 1 at t = 0 and 
0 at t = ∞. Generally, the survival function is most useful for 
comparing the survival progress of two or more strata. 

Hazard rate (h(t)) 

Hazard function h(t) is the conditional failure rate (event 
rate) of  an  individual. Also, it represents the  limit of  the 
probability that an  individual fails in a  very short interval  
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(t, t + ∆t),given that the individual has survived to the begin-
ning of the time interval t: 

[an individual fails in the time inter-
val (t, t + ∆t) given that the individu-
al has survived to time t]

(1) 
This hazard rate (h(t)) is a rate of event occurrence per 

unit of  time, which equals to density of  events at t (f(t)), 
divided by the  probability of  surviving to that duration  
t (s(t)) without experiencing the event, and is also expressed 
as force of mortality, instantaneous failure rate, age-specific 
failure rate, and mortality rate at conditional time interval. 
Generally, hazard function gives a more useful description 
of the risk of failure (hazard) at any time point. 

Kaplan-Meier estimator 

Kaplan-Meier (K-M) is a right continuous step function 
with jumps at the observed event times, and one of the most 
common and efficient means of  non-parameter estimation 
methods of survival function of a given survival data. K-M is 
the commonest initial step in the analysis of un-grouped cen-
sored survival data’s, and its’ plot was used to show the sur-
vival pattern of categorical variables included in the present 
study. However, rank or Wilcoxon test could be applied to 
examine whether observed differences in survival pattern 
over time among groups were significant or not. Uncensored 
and censored information can be included in the plot of K-M 
by considering any point in time as a series of time interval 
defined by the observed survival and censoring times. If there 
is no censoring time, K-M is simply the sample proportion 
of  observations with event times greater than t, for which 
each of these time intervals contain one death time,and this 
death time is assumed to occur at the  start of  the  time in-
terval. t1 < t2 < … < t1p represent the observed failure times 
in a sample of size n, and ri be the number of individuals at 
risk prior to time tp. When the given survival data contains 
the  censoring time information, then the  K-M estimator 
of survival function by [12] formula is written as: 

P (T ≥ t) = S (t)^ = ∏ti≤t pi = ∏ti≤t [1 –
di

]
ri (2) 

where di is the number of events (deaths) at the time ti, 
and ri is the number of subjects at risk at the time tp.

In addition to K-M estimation, survival data can be es-
timated or modeled by semi-parametric and parametric 
survival regression models. In this regard, Cox PH and AFT 
models are the most commonly applied, which will be dis-
cussed in the next subsection respectively.

Cox proportional hazard (PH) model 

Cox PH regression model is a statistical technique that 
was first proposed by Cox [13]. It enables to explore the re-

lationship between the  survival time and one or more ex-
planatory variables in censored event-time (survival) data.  
It consists of  two parts, the  baseline hazard function, de-
noted by λ0(t), and the  effect of  parameters on the  hazard 
function, denoted by exp (βTXip) that describe how the risk 
of event per time unit changes over time at baseline levels 
of covariates, and the hazard varies in response to explana-
tory covariates respectively. The Cox PH model is the most 
popular statistical model in censored survival data analysis, 
which means that the hazard function of one individual is 
proportional to the hazard function of the other person, and 
hence, the hazard ratio is constant overtime. 

The popular Cox PH model defined as the hazard rate λi(t) 
for the ith subjects is: 
λi(t) = λ0(t) × exp (βTXip) =λ0(t) × exp (β1 Xi1 + β2 Xi2 + ... + βp Xip) (3), 

where ti is the survival time, and i = 1, 2, …, n, λ0(t) is the un-
specified baseline hazard function, which is a  non-nega tive 
function of time; λi(t) is the hazard function, P shows the num-
ber of  covariates included in the  model, Xip is a  nxp matrix 
of observed covariates that represent the effect of the covari-
ate on the outcome variable, so-called probability of survival 
of subjects, and β is a column vector of coefficients (p × 1 co-
lumn) estimated by partial maximum likelihood that measures 
the covariates effect. A best fitted type of Cox PH model could 
be selected based on AIC, BIC, and log-likelihood, for which 
the minimum AIC and BIC values of the model is the better 
model. The  coefficients of  covariates in a  Cox proportional 
model is associated with the  survivorship of  subjects under 
study, meaning a  negative coefficient indicates a  negative  
effect on survival, and a positive coefficient denotes a positive 
effect on survivorship. 

As indicated in the  above Equation (3), the  Cox PH 
model has two parts, including the baseline hazard function, 
denoted by λ0(t), which is the hazard for the respective indi-
vidual when all independent variable values equals zero, and 
the effect of parameters, describing how the hazard varies in 
response to predictor variables. 

Equation (3) is a semi-parametric model since the base-
line hazard is non-parametric and the relative risk function 
(exp(β)) is parametric. The  covariates influence the  hazard 
directly through a  log-linear combination of  covariates. 
The  non-parametric element λ0 of  the  Cox model makes 
the model flexible, since no specific distribution is assumed 
for the baseline group. Another advantage of the Cox model 
is the easy interpretation of regression parameters as log-rela-
tive risks. The β1 would, for example, be the effect of xi1, when 
the other covariates were corrected for. β1 may be interpret-
ed in terms of a  relative risk, e.g., when the covariate xi1 is 
increased/decreased by one unit, the hazard function would 
increase/decrease by the amount of exp (β1), respectively. 

RR =
λ0(t) × exp (β1 (Xi1

 + 1) + ... + βp Xip) = exp (β1) (4)
λ0(t) × exp (β1Xi1

 + β2Xi2 + ... + βp Xp)

If β1  >  0, the  risk of  dying increases as xi1 increases,  
if β1  <  0, the  risk of  dying decreases as xi1 increases, and  
if β1 = 0, there is no covariate effect for the change of hazards. 
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Model diagnostics for Cox PH model 

The main assumption of Cox proportional hazards mo-
del is proportional (constant) hazards, meaning individual 
hazard functions ratio is constant over time. To verify Cox 
PH proportionality assumption, residuals are often used, 
and these survival data residuals are somewhat differed from 
other types of  models residuals mainly due to censoring,  
and explained in two ways by graphical and non-graphical 
methods, as follow.

Graphical method-log cumulative hazard 
In order to identify the absence or presence of non-pro-

portional hazards in the model, it is common to use the log cu-
mulative hazard (log (H(t)) plot. This procedure can be imple-
mented by plotting log(–log(s(t))) versus log(t) for all groups in 
every categorical covariate, where t and s(t) are survival time 
and survival function at time t, respectively. If the plot does 
not yield parallel curves separated by β over the  log (time), 
then the PH assumption is failed, and hence the Cox PH esti-
mation is not an appropriate model for a given data set. 

The difficulty of this approach would arise if a covariate 
has too many categories or infinite categories as in contin-
uous covariate. This problem can be solved by dividing the 
subjects into a few categories. 

Other methods, such as Cox-Snell (generalized) residu-
als can be used to assess the model fit for a given data, which 
provides the negative of natural log of the survival probability 
for each observation. Schoenfeld residuals is applied to test 
whether the slope of scaled residuals with respect to time is 
zero or not. If the slope of scaled residuals is not zero, then 
the  proportional hazard assumption was violated. Devi-
ance residual is used to check the symmetrical distribution 
of data about zero (detecting possible outliers in the data), 
and is the most common method used to verify the propor-
tionality assumption of the Cox PH model. 

 Non-graphical method verifying the presence/absence 
of time-dependent covariates in the model 
Time-dependent covariates are created by forming in-

teractions between predictor variables and survival time, 
including them in the model, and finally observed the pres-
ence or absence of  statistically significance covariates. If 
the interaction between time-dependent covariates and 
time is significant at significance level, then proportional-
ity assumption is not observed. This shows that the values 
of time-dependent covariates changed via time, and there is 
no existence of Cox PH model proportionality assumption 
between covariates and time; therefore, the hazard ratio is 
not constant. The next model enables to assess the Cox PH 
model assumption by making time interaction for Xj for  
other covariates, which can be written as follows: 

λ (t, x (t)) = λ0 (t) exp(β1x1 + β2x2 + ... + βjxj + ... + βpxp + δjxj × t)   (5), 
where (x1; x2, …, xp, xj) are the values of the vector of ex-

planatory variables for a particular individual, and  δjxj × t 
represent the result of time and time-dependent covariates, 
with their values changed over time. The null hypothesis to 
verify proportionality is δ = 0, tested by a test statistic either 
a Wald test or a likelihood ratio test. 

A covariate is time-dependent, which mean that the co-
variate value change over time for an  individual, and if 
the interaction between time and time-dependent covariate 
is statistically significant, it indicate that the Cox PH pro-
portionality assumption is not fulfilled. However, the con-
stant hazard assumption of Cox PH model is not always ful-
filled by the given data, and a parametric PH model cannot 
be used as an  alternative model to deal with the problem 
of non-proportionality hazards rather than considering an-
other model, e.g., AFT model that does not assume a con-
stant hazard. 

Accelerated failure time model 

The accelerated failure time (AFT) model is another 
and the  most commonly and alternatively used parameter 
regression model to analyze the time to failure of an event 
(survival time) in the survival data analysis and modeling, 
when the  proportional hazard assumptions does not hold 
and hence, it uses to understand the  relationship between 
survival time and other covariates of studied subjects with 
maximum likelihood parametric estimation method, which 
is one of  the  interests of  survival data analysis. The  AFT 
model takes the logarithm of survival time as the response 
variable, and includes an error term that is assumed to fol-
low a particular distribution, such as exponential, Weibull, 
standard gamma, or log distribution, for which the  best- 
fitted distribution is chosen with AIC, BIC, or log-likelihood 
values, with the context of smaller values in AIC, BIC, and 
a larger value in log-likelihood is the best-fitted model.

Let Ti be a  random variable denoting the  failure time 
of an event for the ith subject, and let xi1, xi2, …, xip be the val-
ues of p covariates, the AFT model is as follows: 

logTi = β0 + β1 xi1 + ... + βp xip + σεi = XT
iβ + σεi            (6),

where logTi is the  log-transformed survival time of pa-
tients, β0, … , βp are (p × 1) the regression coefficient of inter-
est, σ is the unknown scale parameter to be estimated, Xi is 
a (p × 1) vector of covariates with the first component equal 
to 1, and εi is the unobserved random disturbance (errors) 
term used to model the deviation of values of loge (Ti) from 
the  linear part of  model with known mean and common 
variance σε

2, usually assumed to be independent and identi-
cally distributed with some density function f(ε) that could 
be selected based on model selection methods. Among some 
distributions that are assumed for εi are: 

Exponential AFT model 
The general equation of AFT model for any error distri-

bution is: 
log (Ti) = α + δ εi                       (7) 
However, different assumption has produced error term 

distribution and its’ coefficient, and hence, in the case of ex-
ponential error distribution (exponential AFT model), εi has 
a  standard extreme-value distribution with one parameter λ, 
and assuming that σ = 1. If Ti~ E (Exponential) (λ), which can 
be written as f(t) = λe–λt, and then equation (6) is equivalent to: 

log (Ti) = α + δ εi                       (8), 
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where α represents the covariate effect, and εi has a stan-
dard extreme value (min) distribution with density function 
of  . Generally, AFT model with exponen-
tial error distribution can be written as: 
log (Ti) = –(βp

T Xi) + εi = β0* + β1*Xi1 + … + βp*Xip + δ εi    (9), 
where βp* = –βp for all p. 
The change in signs makes intuitive sense, and εi follows 

an extreme value distribution, which just means that follows 
a unit exponential distribution. If the hazard is high, events 
occur quickly and survival times are shorter. 

Weibull AFT model 
The Weibull AFT model is made from exponential AFT 

model with a slight modification. We retain the assumption 
that ε has a standard extreme-value distribution, but we relax 
the assumption of exponential model that σ = 1 allow to be 
estimated. It is a flexible model that the hazard rate can be one 
of the three functions, such as monotone increasing, constant, 
or decreasing. When σ > 1, the hazard decreases with time; 
when σ is between 0.5 and 1, then the hazard is increasing at 
a decreasing rate; when 0 < σ < 0.5, the hazard is increasing 
at an increasing rate; and when σ = 0.5, the hazard function 
is an  increasing straight line with an  origin at 0. Assuming  
Ti ~ W (Weibull) (λ,p), with Weibull density function of  
f (t) = λpptp – 1e–λtp, where λ > 0, p > 0, p is shape parameter and 
then, equation (6) is equivalent to: 

log (Ti) = α + δ εi                         (10),
where α represents the covariate effect, and εi has a stan-

dard extreme value distribution. Generally, AFT model with 
Weibull error term distribution can be presented as: 

log (Ti) = β*TXi + σεi = β0* + β1*Xi1 + … + βp*Xip + δ εi  (11), 
where βp* = –βp/p, and σ = 1/p. 
Gamma AFT model 
Generally, there are two types of  gamma distribution, 

such as the  standard gamma with 2 parameters, and the 
gene ralized gamma with 3 parameters. If Ti ~ standard gam-
ma (λ, k), with density function of 

  for λ > 0, k > 0,  

, 
then, log(Ti) can be developed in terms of  standard 

gamma distribution, as it simply adds a scale parameter in 
the expression of log T, so that: 

logTi = α + δεi                     (12), 
where α is the covariate effect, and εi has a standard ex-

treme value distribution. Standard gamma, Weibull, expo-
nential, and log-normal models are all special cases of  the 
generalized gamma model, when the following conditions are 
satisfied: 
•	 Gamma, when p = 1; 
•	 Weibull, when k = 1; 
•	 Exponential, when p = 1 and k = 1; 
•	 Log-normal as a special limiting case, when k → ∞. 

Log-normal AFT model 
The log-normal model simply assumes that if εi ~ N (0, 1)  

or Ti ~ N (0, 1), then logTi has a log-normal distribution if:
logTi = α + δ εi                     (13), 

where Ti has a standard normal distribution with densi-
ty function of 

f(Ti = t)                                      , for which µ and σ are the  
mean and standard deviation, respectively. 

Ethical consideration 

Permission to undertake this study was obtained from 
Ethical Review Board of the Debre Berhan University College 
of Natural and Computational Science at the time of attend-
ing the  author’s MSc degree at this university. This official 
letter of permission and cooperation was written by the Sta-
tistics Department to the  Debre Berhan Referral Hospital, 
and the ethical committee of the hospital allowed for review-
ing patients’ data. Any personal information regarding study 
subjects was replaced by a number, and patient evidence was 
kept confidential during and after data collection from clini-
cal charts. Training on the objectives of the study was given to 
data collector for accurate and honest data collection. 

Statistical data analysis 

General descriptive statistics 

As shown in Table 1, among the  total of  407 HIV/TB 
co-infected patients included in this study, 196 (48.16%) 
were females. During the follow-up period, 120 (29.5%) pa-
tients died due to the  diseases. Majority (n = 74, 61.67%) 
of  those who died of  TB/HIV co-infection were males, 
108 (90%) had pulmonary TB, and 12 (10%) suffered from  
extra-pulmonary TB. Of those who died of  HIV/TB co- 
infection, 3, 58, 20, and 39 cases were at stage I, stage II,  
stage III, and stage IV WHO clinical stage of HIV disease, 
respectively. Out of the 407 HIV-positive TB patients under 
ART followed-up, 153 (37.59%) were married, 222 (54.55%) 
were single, and 32 (7.9%) were divorced. Regarding 
the baseline functional status of patients, 24.57% were able 
to do their dayto-day activities, such as farming, harvesting, 
office work, and others; 13.27% and 62.16% presented bed-
ridden and ambulatory status, respectively. 

Descriptive statistics for survival status 
and associated factors 

The survival endpoint was measured in months and 
defined as the difference between the date of death or cen-
soring and the date of HAART initiation. Among the total 
of  407 HIV/TB co-infected patients, 120 (29.48%) experi-
enced the event of interest, and the remaining 287 (70.52%) 
were censored. Out of  the  total of  the 407 patents, 52.26% 
of female and 47.74% of male patients were censored. About 
25.09% of  those working, 64.81% with ambulatory and 
10.10% with bedridden status patients were censored. In 
the case of baseline WHO clinical stages, 3.83%, of stage I, 
51.22% of stage II, 17.77%, of stage III, and 27.18% of stage IV 
patients were censored. Based on the patients’ marital status, 
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35.89% of single, 56.45% of married, and 7.66% of divorced 
cases were censored, and the remaining patients experience 
an event. The summary statistics of the others independent 
variables is presented in Table 1. 

Plots in Figure 1A indicate that the overall survival of pa-
tients was in rather a  good manner, because of  the  graph 
of  survival probability of  all patients was almost above 
the mean survival, and did not quickly descend to the lower 
probability stage. Figures 1B-D show that female patients in 
child first-line ART regimen and ambulatory functional status 
had slightly higher survival rate than male patients after fifty 
months of follow-up, and hence, female patients in child first-
line ART regimen and ambulatory functional status present-
ed slightly lower hazard rate than male patients. The survival 
times were found to be significantly different in sex groups. 

Table 2 shows the summary results of continuous covari-
ates, mean age, sqrtCD4, and baseline CD4+ count of the 
co-infected patients were 33.63, 1.65, and 125.3, respectively. 

Cox proportional hazard model 

It is commonly known that Cox PH model is applied in 
medical research, and used to associate the  survival time 
of  patients with covariates; first, it should be found which 
types of model (model with and without covariates) is an ap-
propriate model for a collected data, as shown in Table 3. 

As indicated in Table 3, the  values of  AIC and BIC 
were decreased, and the value of –2 logL was increased for 
the model estimated with covariate using exact ties handling 
method which implies that the chosen model was an appro-
priate model, and the covariates had a  significant effect on 
hazard rate of individuals. 

In addition, the  significance of  covariates in explaining 
the model can be also tested by global test method. 

The results in Table 4 suggest that all covariates coef-
ficients were differ from zero, and hence, there was some 
correlation between covariates and hazard rate. It was con-
cluded that the model with explanatory variables was more 
effective than the null model, and hence, the Cox PH model 
based on covariates values could fit. 

As shown in Table 5, the hazard ratio for all the refer-
ence groups was 1, which was the default value of the ref-
erence categories. The fitted Cox PH model can be written as: 
λi (t/X) =  λ0 (t) exp (0.3608Malei – 0.0122Agei – 0.0076Marriedi 

+ 0.407Othersi + 0.1096Urbani – 0.0809Stage-IIi 
– 0.0016Stage-IIIi + 0.3394Stage-IVi – 0.1452Am-
bulatoryi + – 0.7093Bedriddeni + 0.0422Employedi 
– 0.3368Consumei + 0.0043Adult second-linei  
– 0.2442Child first-linei – 0.2442Child second-linei 
+ 0.2832Othersi– 0.1293Smokei – 0.0204Primaryi 
– 0.6200Secondaryi – 0.2952Diploma and abovei 
– 0.4177Extra-pulmonaryi + 0.1779Muslimi  
+ 0.2635Protestanti + 0.1841Catholici + 08485Sqrt-
CD4i – 0.0031BaselineCD4i+ 0.0620BMIi).

As depicted in Table 5, the  estimated hazard ratio 
of  males was 1.434 and implied that the  risk of  death of 
males was increased by 43.4% compared with females. Risk 
of death could be also interpreted based on coefficients of 

Table 1. Frequency distribution for baseline independent vari-
ables along with the censored observations of time-to-death 

Characteristics/Categories Total (%) Censored (%) 

Sex

Female* 48.16 52.26 

Male 51.84 47.74 

Marital status

Married* 37.59 35.89 

Single 54.55 56.45 

Others 7.86 7.66 

Residence

Rural* 8.84 9.06 

Urban 91.15 90.94 

WHO clinical stage

Stage I* 3.44 3.83 

Stage II 50.37 51.22 

Stage III 17.44 17.77 

Stage IV 28.75 27.18 

Functional status

Working* 24.57 25.09 

Ambulatory 62.16 64.81 

Bedridden 13.27 10.10 

Employment status

Unemployed* 21.87 23.00 

Employed 78.13 77.00 

Alcohol consumption

No* 67.08 65.85 

Yes 32.92 34.15 

ART regimen

Adult first-line* 25.30 25.09 

Adult second-line 42.26 39.72 

Child first-line 23.10 26.13 

Child second-line 4.18 4.18 

Others 5.16 4.88 

Smoking status

No* 88.45 88.15 

Yes 11.55 11.85 

Education

Illiterate* 19.66 19.16 

Primary 42.51 40.77 

Secondary 31.44 33.80 

Diploma and above 6.39 6.27 

Type of tuberculosis

Pulmonary* 86.48 85.02 

Extra-pulmonary 13.52 14.98 

Religion

Orthodox* 62.90 63.41 

Muslim 19.66 18.81 

Protestant 10.56 10.81 

Catholic 6.88 6.97 

*Reference group for each covariate characteristics



A survival analysis of HIV/TB patients, Ethiopia 117

HIV & AIDS Review 2023/Volume 22/Number 2

A B
1.0

0.8

0.6

0.4

0.2

0.0O
ve

ra
ll 

su
rv

iv
al

 p
ro

ba
bi

lit
y 

of
 p

at
ie

nt
s

Time [months]

0 50 100 150

1.0

0.8

0.6

0.4

0.2

0.0

O
ve

ra
ll 

su
rv

iv
al

 p
ro

ba
bi

lit
y 

 
ba

se
d 

on
 s

ex

Time [months]

0 50 100 150

Female
Male

C D
1.0

0.8

0.6

0.4

0.2

0.0

Su
rv

iv
al

 p
ro

ba
bi

lit
y

Time [months]

0 50 100 150

1.0

0.8

0.6

0.4

0.2

0.0

Su
rv

iv
al

 p
ro

ba
bi

lit
y

Time [months]

0 50 100 150

Adult 1st line
Adult 2nd line
Child 1st line
Child 2nd line
Others

Working
Ambulatory
Bedridden

Figure 1. Kaplan-Meier survival plots of sex and antiretroviral therapy (ART) regimen of HIV-infected patients under ART 

Table 2. Summary of continuous predictor variables 

Covariates Minimum 1st quartile Median Mean 3rd quartile Maximum 

Age 18.00 27.00 32.00 33.63 39.00 66.00 

Sqrt CD4 1.410 1.590 1.650 1.648 1.700 1.900 

Baseline CD4+ 2.00 51.00 98.00 125.3 169.0 979.0 

BMI 1.20 17.04 20.20 19.47 22.56 33.28 

Table 3. Model fit statistics 

Criterion With covariates Without covariates 

–2 log L 56.88 –657.17 

AIC 1,261.32 1,314.35 

BIC 1,311.87 1,314.35 

Table 4. Testing of global null hypothesis BETA = 0 

Test χ2 DF Pr > χ2

Likelihood ratio test 56.88 27 7e-04 

Wald test 53.64 27 0.002 

Score (log-rank) test 55.00 27 0.001 



Table 5. Partial maximum likelihood estimates of Cox PH model 

Covariates/Categories Coefficients 
(β) 

Standard error 
of coefficients 

Hazard ratio (HR) 
Exp (β) 

95% CI for HR p-value 

Sex

Female – – 1.00 –

Male 0.360755 0.208484 1.434413 (0.95-2.16%) 0.04356* 

Age –0.012153 0.016759 0.987921 (0.96-1.02%) 0.46837 

Marital status

Married – – 1.00 –

Single –0.007586 0.270064 0.992443 (0.58-1.68%) 0.97759 

Others 0.407 0.477713 1.502561 (0.59-3.83%) 0.39403 

Residence

Rural – – 1.00 –

Urban 0.109635 0.370667 1.115871 (0.54-2.31%) 0.76740 

WHO clinical stage

Stage I – – 1.00 –

Stage II –0.080909 0.614450 0.922278 (0.28-3.08%) 0.89524 

Stage III –0.001629 0.644368 0.998372 (0.28-3.53%) 0.99798 

Stage IV 0.339431 0.623476 1.404149 (0.41-4.77%) 0.58615 

Functional status

Working – – 1.00 –

Ambulatory –0.145243 0.240597 0.864812 (0.54-1.39%) 0.54606 

Bedridden 0.709318 0.315480 2.032604 (1.10-3.77%) 0.02455* 

Employment status

Unemployed – – 1.00 –

Employed 0.042213 0.260587 1.043117 (0.63-1.74%) 0.87131 

Alcohol consumption

No – – 1.00 –

Yes –0.336848 0.208357 0.714018 (0.47-1.07%) 0.10595 

ART regimen

Adult first-line – – 1.00 –

Adult second-line 0.004376 0.231222 1.004386 (0.64-1.58%) 0.98490 

Child first-line –0.244204 0.312166 0.783328 (0.42-1.44%) 0.43404 

Child second-line –0.112543 0.507496 0.893559 (0.33-2.42%) 0.82450 

Others 0.283159 0.458018 1.327317 (0.54-3.26%) 0.53643 

Smoking status

No – – 1.00 –

Yes –0.129324 0.322600 0.878689 (0.47-1.65%) 0.68851 

Education level

Illiterate – – 1.00 –

Primary –0.020437 0.298255 0.979771 (0.55-1.76%) 0.94537 

Secondary –0.619954 0.324803 0.537969 (0.28-1.02%) 0.05020* 

Diploma and above –0.295195 0.438798 0.744386 (0.32-1.76%) 0.50112 

Type of tuberculosis

Pulmonary – – 1.00 –

Extra-pulmonary –0.417701 0.313581 0.658559 (0.36-1.22%) 0.18285 

Religion

Orthodox – – 1.00 –

Muslim 0.177937 0.244482 1.194750 (0.74-1.93%) 0.46673 

Protestant 0.263521 0.330892 1.301505 (0.68-2.49%) 0.42580 

Catholic 0.184063 0.386996 1.202091 (0.56-2.57%) 0.63435 

sqrtCD4 0.848539 1.318221 2.336232 (0.18-30.94%) 0.51977 

Baseline CD4+ -0.003078 0.001143 0.996927 (0.99-1.00%) 0.00709** 

BMI 0.062016 0.022966 1.063979 (1.02-1.11%) 0.00693** 

*Significance at p = 0.05 level. **More significance level at 0.05 level of significance
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covariates, and hence, as the coefficient value of males was 
greater than zero, it suggested that the risk of dying was in-
creased as the value of sex changed from female to male and 
vise-versa. The hazard ratio for a 1 year growth in the age 
of  a  patient was 0.988, and this could be interpreted as 
the hazard of death decreased by 1.2% for a one year growth 
in age. The  risks of  death in ambulatory and bedridden 
functional status were 0.864 and 2.033 times less and greater 
than working functional status, respectively. Based on WHO 
stages, the estimated HR of stage II, III, and IV were 0.922, 
0.998, and 1.404, respectively. This implied that patients with 
stage II and stage III were 7.8% and 0.2% less at risk as com-
pared with patients at stage I, respectively, and patients with 
stage IV were 1.404 times at risk than patients with stage I, 
or the risk of death of patients with stage IV was 40.4% more 
at risk as compared with patients with stage I. The estimated 
hazard ratio for BMI of patients was 1.063, with a 95% CI: 
1.02-1.11%, which indicated that the risk of death increased 
by 6.3% for 1 kg/m2 increase in BMI. 

Cox PH regression model diagnosis 
Graphical methods 
Mostly, the  graphical approaches are performed based 

on residuals against/versus time or to test the proportional 
hazard assumption of  Cox PH model. The  most common 
graphical methods are as follow. 

Clog-log approach: Based on this approach, if the  plot 
of  the  log (–log(s (t))) versus log (time) is parallel, then 
the  proportional hazard assumption of  Cox PH model is 
reasonable. As shown in Figure 2, it seems that the Cox PH 
assumption failed, as the  clog-log (log-cumulative hazard) 
versus log (time) plots of  all covariates were not parallel 
(cross-over to each other), and the Cox PH model did not 
adequately fit the given data. 

Cox-Snell residual approach: If a plot of Cox-Snell resid-
ual is considered as a pseudoobservation time versus the cu-
mulative hazard rate (Nelson-Aalen cumulative hazard es-
timator) for the goodness of fit test of Cox PH model that 
passes through the origin at 45o (a unit slope), then the Cox 
PH model adequately fit the given data set. As described in 
Figure 3, the  plot of  Nelson-Aalen cumulative hazard rate 
to each Cox-Snell residuals (ei) (considered as a  pseudo-
observation time) that did not pass through the origin and  
shifted from 45 degree, which implied that the PH model did 
not adequately fit the data. 

Schoenfeld residual approach: The scatter plot of Schoen-
feld residuals, which shows the difference between each co-
variate observed value for an individual who failed at given 
risk set time minus its’ expected value, are used to assess 
the PH assumption at every failure time. There is a separate 
Schoenfeld residual for each individual for each covariate. 
It tests the independence between each individual covariate 
residuals and time. Meaning, if the scatterplot of  the fitted 
scaled Schoenfeld residuals versus time for each covariate 
is parallel with the  horizontal reference line y  =  0 and all 
the  residuals data points are distributed around zero, then 
the PH model assumption holds and it could be concluded 

that the  given Cox PH model is an  appropriate model for 
a given data. As indicated in Figure 4, for most of  the co-
variates, the fitted residual data points represented by blue 
dashed line (smooth fit of  scaled Schoenfeld residual) was 
not parallel with the reference line y = o (red line), and re-
sidual data points represented by black doted points were 
not distributed around zero, and except for some covariates, 
it showed that the proportionality hazard assumption of Cox 
PH model was not satisfied as we could saw in the clog-log ap-
proach, and hence, the model did not adequately fit the data. 

Deviance residual approach: The deviance residual in 
Cox PH model can be used in two ways, one for goodness 
of fit test and the other one is for proportional hazard as-
sumption checking based on each covariate. 

The goodness of fit test approach examines the influen-
tial observations in the data set as that of DF beta/s. The plot 
of deviance residuals distributed symmetrically about zero, 
and hence, this approach is used to test the  effectiveness 
of a given model for a given data set. As shown in Figure 5, 
the negative values of the deviance residual were greater than 
its’ positive values, indicating that there were more individu-
als that live too long as compared with their expected surviv-
al time. A very large negative or positive values showed that 
the  presence of  outliers and most of  the  deviance residual 
data points were below the horizontal line and distributed 
far from zero (not symmetrically distributed about zero 
(mean = y = 0), which indicated the weakness of Cox PH 
model in fitting this data set. 

The second type of  deviance residuals application is 
hazard assumption checking based on each covariate. As 
indicated in Figure 6, the deviance residual plots (red line) 
of some covariates was not parallel to the referenced hori-
zontal line, and hence, the Cox PH proportional hazard as-
sumption was not fulfilled in the model. 

Non-graphical methods 
Time-varying coefficients approach: In the  case of non- 

graphical approach, proportional hazard assumption can 
be tested based on each covariate and overall model p-value 
that disproved a  significant (non-significant) relationship 
between each individual covariate and overall Cox PH mod-
el covariates and time, which was originally proposed by 
Schoenfeld [14] and Harrell [15]. 

As shown in Table 6, the  test result was not statistical-
ly significant almost for all covariates, except for alcohol 
consumption and education. However, the global test result 
showed that the  overall model was statistically significant. 
This implies that, the  coefficients of  the  overall model co-
variates changed over time and hence, the proportional haz-
ards assumption was not fulfilled in the model. 

Modeling time-dependent covariate with time interaction 
approach: This technique is used to include the time-depen-
dent covariates with time interaction in the Cox PH model, 
and to analyze whether the interaction is statistically signifi-
cant. As shown in Table 7, some covariates were statistically 
significant after including the time-varying covariates with 
time interaction, and hence, the presence of statistically sig-
nificant covariates after including these interactions implies 



Figure 2. Clog-log versus log (time in months) plot of sex, marital status, WHO clinical stages, functional status of patients, 
antiretrival regimen, and type of tuberculosis
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Figure 5. Mean estimation plot of deviance residual for all 
observations 
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Residualsthat the assumption of proportional hazard in the Cox PH 
model was failed. Based on all Cox PH model diagnostics re-
sults, the proportional hazard assumptions of Cox PH model 
were not fully satisfied. Therefore, the Cox PH model was 
not a good model and adequately fit the co-infected patients’ 
data; therefore, it should proceed to another best alternative 
model, AFT model, to fit well the given data. 

Accelerated failure time model 

AFT model is a parametric survival model, for which its’ 
errors follow a certain distribution. In this case, errors may dis-
tribute as exponential, Weibull, standard Gamma, and log-nor-
mal distribution. To select the best error distribution, AIC and 
BIC were applied (the smaller value the better), and also maxi-
mum likelihood ratio test (the larger value the better). 

As illustrated in Table 8, log-normal model seems to fit 
the data better, with the minimum AIC, BIC and maximum 
log-likelihood values of 1,534.056, 1,650.311, and -738, re-
spectively. Log-normal model suggested as an  appropriate 
model for the  data under study. Therefore, the  model was 
fitted using the  assumed log-normal distribution survival 
function for survival time (T) of  the  co-infected patients. 
The  parameter estimates of  AFT model using log-normal 
distribution are given in Table 9. 

Table 9 shows the  results of  fitted AFT model using 
log-normal distribution, and it was found that variables, 
such as marital status, WHO clinical stages, functional  
status, ART regimen, religion, sqrtCD4, baseline CD4+, 
and all these covariates with time interaction and the only 

additional covariate education with time interaction at en-
rollment were statistically significant. Both baseline CD4+ 
and sqrtCD4 had a significance effect on the survival time 
of  the  co-infected patients. In addition, the  effect of  ART 
regimen drugs were clearly shown by AFT model, which was 
not seen in Cox PH model; therefore, AFT model adequately 
fitted this data set rather than Cox PH model did, and the re-
duced AFT model was written as: 
log (timei) =  4.30 + (3.08e-03) Agei + (1.32e-01) Maritalstatus1i 

+ β2 (1.64e-01) Maritalstatus2i + (–6.11e-02) 
Residence + (–1.48e-01) WHOclinicalstage1i 
+ (–3.83e-01) WHOclinicalstage2i + (–3.15e-01) 
WHOclinicalstage3i + (–2.32e-02) Functional-
status1i + (–3.26e-01) Functionalstatus2i  
+ (2.16e-02) Employmentstatusi + (2.32e-02) 
ART_Regimen1i + (–9.64e-02) ART_Regimen2i 
+ (2.24e-01) ART_Regimen3i + (–1.63e-02) 
ART_Regimen4i + (6.87e-02) Smokingstatusi 
+ (1.17e-02) Religion1i + (1.88e-01) Religion2i 
+ (8.82e-02) Religion3i + (–6.39e-01) SqrtCD4i 
+ (4.62e-04) BaselineCD4i + (–4.06e-03) BMIi 
+ (–3.33e-05) Time*Agei + (–1.73e-03) 
Time*Maritalstatus1i + (–2.51e-03) Time* 
Mari talstatus2i + (7.33e-04) Time*Residen-
cei + (1.79e-03) Timei*WHOclinicalstage1i  
+ (5.86e-03) Timei*WHOclinicalstage2i + (4.68e-
03) Timei*WHOclinicalstage3i + (1.30e-04) 
Timei*Functionalstatus1i + (4.46e-03) Timei*-
Functionalstatus2i + (–3.07e-04) Time*Employ-
mentstatusi + (–8.24e-04) Timei*ART_Regimen1i 
+ (7.35e-04) Timei*ART_Regimen2i + (–4.22e-
03) Timei*ART_Regimen3i + (–4.80e-04) 
Timei*ART_Regimen4i + (–1.07e-03) Time*-
Smokingstatusi + (–2.05e-03) Timei *Education1i 
+ (–1.65e-03) Timei*Education2i + (–2.63e-03) 
Timei*Education3i + (–4.52e-04) Timei*Religion1i 
+ (–2.46e-03) Timei*Religion2i + (–1.79e-03) 
Timei*Religion3i + 1.05e-02Timei*SqrtCD4i 
+ (–4.74e-06) Timei*BaselineCD4i + (–2.90e-05) 
BMIi + (0.0913)εi 

Table 6. Test of proportional hazards assumption for each 
covariate and overall model 

Covariates χ2 value DF-value p-value 

Sex 0.54065 1 0.462 

Age 0.03759 1 0.846 

Marital status 2.20374 2 0.332 

Residence 1.84901 1 0.174 

WHO clinical stage 2.51627 3 0.472 

Functional status 4.59294 2 0.101 

Employment status 1.19844 1 0.274 

Alcohol consumption 4.20781 1 0.040 

ART regimen 4.99290 4 0.288 

Smoking status 0.21576 1 0.642 

Education 8.36286 3 0.039 

Type of TB 0.00323 1 0.955 

Religion 4.52154 3 0.210 

sqrtCD4 0.13324 1 0.715 

Baseline CD4+ 2.10444 1 0.147 

BMI 0.15716 1 0.692 

GLOBAL test (overall 
model test) 

43.84207 27 0.021 
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Table 7. Cox PH model with time-varying covariates with time interaction 

Covariates/Categories Coefficients (β) Hazard ratio (HR), Exp (β) p-value 

Sex

Female – 1.00 –

Male 3.581e-01 1.431e+00 0.08526 

Age 1.112e-02 1.011e+00 0.93268 

Marital status

Married – 1.00 –

Single 1.268e-03 1.001e+00 0.99625 

Others 3.935e-01 1.482e+00 0.41054 

Residence

Rural – 1.00 –

Urban 1.245e-01 1.133e+00 0.73710 

WHO clinical stage

Stage I – 1.00 – 

Stage II –7.427e-02 9.284e-01 0.90374 

Stage III –2.930e-03 9.971e-01 0.99637 

Stage IV 3.451e-01 1.412e+00 0.57976 

Functional status

Working – 1.00 –

Ambulatory –1.508e-01 8.600e-01 0.53086 

Bedridden 7.041e-01 2.022e+00 0.02533* 

Employment status

Unemployed – 1.00 –

Employed 3.888e-02 1.040e+00 0.88120 

Alcohol consumption

No – 1.00 –

Yes –3.359e-01 7.147e-01 0.10787.

ART regimen

Adult first-line – 1.00 –

Adult second-line 1.291e-02 1.013e+00 0.95541 

Child first-line –2.389e-01 7.875e-01 0.44396 

Child second-line –1.138e-01 8.925e-01 0.82272 

Others 2.520e-01 1.287e+00 0.58211 

Smoking status

No – 1.00 –

Yes –1.412e-01 8.684e-01 0.66187 

Education level

Illiterate – 1.00 –

Primary –2.001e-02 9.802e-01 0.94648 

Secondary –6.234e-01 5.361e-01 0.05437* 

Diploma and above –2.863e-01 7.511e-01 0.51405 

Type of tuberculosis

Pulmonary – 1.00 –

Extra-pulmonary –4.372e-01 6.459e-01 0.16380 

Religion

Orthodox – 1.00 –

Muslim 1.823e-01 1.200e+00 0.45552 

Protestant 2.739e-01 1.315e+00 0.40779 

Catholic 1.752e-01 1.191e+00 0.65036 

sqrtCD4 1.422e+01 1.503e+06 0.38919 

Baseline CD4+ –3.106e-03 9.969e-01 0.00673** 

BMI 2.268e-01 1.255e+00 0.45148 

tt (age) –5.192e-03 9.948e-01 0.85986 

tt (sqrtCD4) –3.039e+00 4.787e-02 0.41617 

tt (BMI) –3.773e-02 9.630e-01 0.58161 

*Significance at p = 0.05 level. **More significance level at 0.05 level of significance.



Table 8. Parametric survival model selection 

Parametric survival model AIC BIC LogLik (model) 

Weibull model 1,551.729 1,667.985 –746.9 

Exponential model 1,609.213 1,721.459 –776.6 

Gamma model 1,624.577 1,740.00 –783.3 

Log-normal model 1,534.056 1,650.311 –738.00 

Table 9. Estimated parameters for parametric survival model with log-normal distribution 

Fixed effect/Categories Coefficients 
(β) 

Standard 
error 

p-value 

(Intercept) 4.30e+00 1.65e-01 < 2e-16* 

Age 3.08e-03 3.13e-03 0.32543 

Marital status

Married – – –

Single 1.32e-01 5.01e-02 0.00827* 

Others 1.64e-01 8.70e-02 0.05919* 

Residence

Rural – – –

Urban –6.11e-02 8.00e-02 0.44494 

WHO clinical stage

Stage I – – –

Stage II –1.48e-01 1.36e-01 0.27912 

Stage III –3.83e-01 1.47e-01 0.00901* 

Stage IV –3.15e-01 1.40e-01 0.02462* 

Functional status

Working – – –

Ambulatory –2.32e-02 4.73e-02 0.62383 

Bedridden –3.26e-01 6.73e-02 1.3e-06** 

Employment status

Unemployed – – –

Employed 2.16e-02 5.21e-02 0.67793 

ART regimen

Adult first-line – – –

Adult second-line 2.32e-02 4.82e-02 0.62996 

Child first-line –9.64e-02 5.64e-02 0.08766 

Child second-line 2.24e-01 9.31e-02 0.01629* 

Others –1.63e-02 8.82e-02 0.85334 

Smoking status

No – – –

Yes 6.87e-02 5.40e-02 0.20265 

Education

Illiterate – – –

Primary 4.78e-02 6.66e-02 0.47289 

Secondary 6.38e-02 6.78e-02 0.34679 

Diploma and above 1.44e-01 1.06e-01 0.17340 

Type of tuberculosis

Pulmonary – – –

Extra-pulmonary 7.49e-02 5.47e-02 0.17062 

Religion

Orthodox – – –

Muslim 1.17e-02 5.02e-02 0.81532 

Protestant 1.88e-01 6.50e-02 0.00382* 

Catholic 8.82e-02 7.73e-02 0.25372 



Fixed effect/Categories Coefficients (β) Standard error p-value 

sqrtCD4 –6.39e-01 1.67e-01 0.00013** 

Baseline CD4+ 4.62e-04 1.98e-04 0.01982* 

BMI –4.06e-03 5.31e-03 0.44387 

Age: Time –3.33e-05 4.27e-05 0.43488 

Marital status: Time

Married – – –

Single –1.73e-03 6.79e-04 0.01104* 

Others –2.51e-03 1.28e-03 0.050* 

Residence: Time

Rural – – –

Urban 7.33e-04 1.03e-03 0.47601 

WHO clinical stage: Time

Stage I – – –

Stage II 1.79e-03 1.68e-03 0.28880 

Stage III 5.86e-03 1.94e-03 0.00257* 

Stage IV 4.68e-03 1.79e-03 0.009* 

Functional status: Time 

Working – – –

Ambulatory 1.30e-04 5.98e-04 0.82847 

Bedridden 4.46e-03 1.06e-03 2.4e-05* 

Employment status: Time 

Unemployed – – –

Employed –3.07e-04 7.34e-04 0.67540 

ART regimen: Time

Adult first-line – – –

Adult second-line –8.24e-04 6.64e-04 0.21464 

Child first-line 7.35e-04 7.56e-04 0.33109 

Child second-line –4.22e-03 1.18e-03 0.00036** 

Others –4.80e-04 1.11e-03 0.66656 

Smoking status: Time

No – – –

Yes –1.07e-03 7.06e-04 0.13094 

Education: Time

Illiterate – – –

Primary –2.05e-03 1.08e-03 0.05712* 

Secondary –1.65e-03 1.08e-03 0.12825 

Diploma and above –2.63e-03 1.39e-03 0.05762* 

Type of tuberculosis: Time

Pulmonary – – –

Extra-pulmonary –6.98e-04 6.98e-04 –0.31746 

Religion: Time

Orthodox – – –

Muslim –4.52e-04 6.98e-04 0.51780 

Protestant –2.46e-03 8.08e-04 0.00233* 

Catholic –1.79e-03 1.10e-03 0.10346 

sqrtCD4: Time 1.05e-02 1.73e-03 1.4e-09** 

Baseline CD4+: Time –4.74e-06 2.36e-06 0.04510* 

BMI: Time –2.90e-05 7.20e-05 0.68749 

Log (scale) 2.39e+00 6.66e-02 < 2e-16** 

Scale: 0.0913 – – –

*Significance at p = 0.05 level. **More significance level at 0.05 level of significance. 

Table 9. Cont.



Delelegn Eshete Gebreyes 128

HIV & AIDS Review 2023/Volume 22/Number 2

Discussion 
HIV and TB diseases are a major public health prob-

lem, and their damages are still at a shocking level. There-
fore, a  retrospective cohort study was performed among 
407 patients in order to assess the effect of HAART treat-
ment on the improvement of HIV/TB co-infected patients’ 
lifetime using survival data analysis methods. These sur-
vival data analysis method may include Cox PH or AFT 
model (if Cox PH proportional assumption is failed). 
A  study conducted in South Africa [16] revealed that 
the log-logistic AFT model was the most appropriate mod-
el for fitting the co-infected patients’ data. But, in the pres-
ent study, the  lognormal AFT model was the  best fit for 
the  data. The  followup period of  this study also revealed 
that there were 29.5% deaths among HIV/TB co-infected 
patients, which might be comparable with a study of San-
zana [17] and higher and lower than studies of [18-23] and 
[1, 16, 24-26], respectively. In this study, female patients 
presented slightly higher survival time than male patients 
as indicated in the K-M plot of patients, which might show 
a comparable result with studies of Sanzana [17] and Kos-
gei et al. [27]. The mean and median age of the co-infected 
patients’ were 33.63 and 32 years old, respectively, which 
implies that youths were the most infected with HIV per-
sons, leading to TB co-infection, since this age represents 
sexually active stages with a high possibility of unprotected 
sex or sharing drug injection equipment that are the most 
common modes of HIV transmission [17, 28]. 

In the current study, both the Cox PH and AFT mod-
els for analyzing of the co-infected patients’ data set were 
demonstrated. But, based on several types of  statistical 
tests, the  proportionality hazard assumption of  the  Cox 
PH model failed, and analyzing this data set using the Cox 
PH model would lead to misleading and erroneous scien-
tific findings to proceed with an  alternative survival data 
analysis method, AFT model. AFT model is another alter-
native survival model for survival datasets with censored 
observations when the  Cox PH model assumption fails, 
with a  different assignment of  error term distribution or 
survival time. As indicated in Table 8, out of four paramet-
ric assumptions for survival time or error term distribu-
tion, log-normal AFT model distribution was selected as 
a wellfitted error term distribution based on AIC, BIC, and 
log-likelihood values. In the final log-normal AFT model 
applied, its’ output revealed that WHO clinical stages and 
their interaction with time were the significant determinant 
factors of survival time of the co-infected patients at a 5% 
significant level, presenting a  higher risk of  developing 
TB and other HIV opportunistic diseases, while patients 
WHO clinical stages increased, as demonstrated by previ-
ous studies [29-31]. Also, it was found that the functional 
status and its’ interaction with time had a significant effect 
on the survival time of patients at a given significant level, 
which agreed with another studies’ results [16, 21, 32, 33]. 
The level of CD4+ counts of co-infected patients’ and their 
interaction with time were the  significant predictor vari-

ables for the survival time of patients, which showed that 
a higher CD4+ counts of patients would increase their sur-
vival time, according to the literature [25, 32, 34-37]. 

The current study also found that ART regimen had 
a  positive statistical significance at a  5% significant level, 
which showed an  improved level of  CD4+ counts of  co- 
infected patients, and as a  result, improved the  survival 
time of patients, as shown in the AFT model rather than in 
the  Cox PH model. Therefore, a  long time of  HAART ex-
posure could be important factor in reducing the incidence 
of TB, and as a result, mortality of the co-infected patients [8]. 
Inconsistent with a study of  [38], in women’s first birth in-
terval (FBI) using the  log-normal AFT model, education 
was found as a  significant covariate for the  survival time 
of co-infected patients in the hospital, because HAART im-
proves CD4+ counts necessary to fight with HIV/AIDS vi-
ruses replication [37, 39], and reduces the risk of developing 
TB [8, 40, 41]. 

In addition to the  abovementioned covariates, the log- 
normal AFT model results reveal that ART regimen, marital 
status, religion, and baseline CD4+ count with their interac-
tions with time, were significant predictor variables at the 5% 
levels of significance. However, covariates, such as age, resi-
dence, employment status, smoking status, education, types 
of TB, and BMI were not statistically significant, with p-value 
greater than 0.05. 

The main strength of the study is the inclusion of nu-
merous paired baseline and followup predictor variables 
with their interaction with time, and data collected with 
follow-up time of  11 years, which yields relatively con-
sistent records and reliable findings. Finally, AFT model 
provided a better fit, and was found that it was the more 
suited model for this study compared with the  Cox pro-
portional hazards model [34, 42], due to the  following 
reasons. The  first reason is that the  AFT model analyses 
directly the time-to-event/ death rather than hazard ratios 
as that of the Cox proportional hazard model, which makes 
the  interpretation of output clinically relevant and mean-
ingful. It provides a more informative results with realistic 
interpretation [43]. The  second reason is that AFT (log- 
normal) model was also found to perform better prediction, 
and lead to a more precise result compared with the Cox 
proportional hazard model for the right-hand distribution 
of the model [44, 45]. Additionally, a recent study conduct-
ed in Malaysia reported that AFT models were the  more 
fitted models as compared with the  Cox models [42]. In 
the current study, based on AIC, BIC, and log-likelihood 
values, the log-normal parametric model was the selected 
AFT model, when the proportionality assumption of Cox’s 
regression model was not fulfilled. 

Conclusions 
This study was a retrospective cohort study of HIV/TB 

co-infected patients, and data from January 1, 2005 till  
30 December, 2016 were taken from the Debre Berhan Re-
ferral Hospital, with permission given to undergo the main 
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objectives of the study. From the results of this study, early 
start and lifelong HAART treatment is necessary to im-
prove lifetime of the co-infected patients, and hence, pro-
vide a great concern on the treatment of patients upon this 
lifelong drug. 

AFT models showed a better fit compared with the Cox 
regression model for the  time-to-event/death data. To  
model the  determinant factors of  time-to-event/death of 
HIV/TB co-infected patients, four parametric models were 
assumed for the error term distribution, and the log-normal 
model was selected as the  best model based on AIC, BIC, 
and log-likelihood values. According to the  selected AFT 
(log-normal) model, the current study showed that prognos-
tic factors, such as WHO clinical stages, functional status, 
CD4+ counts, ART regimen, marital status, religion, base-
line CD4+ counts, and their interactions with time, were 
among the significant predictors of log-normal AFT model 
at 5% significance level. 

Limitation of the study 
This study has the  following limitation. Some important 

prognostic factors, including diabetes mellitus, viral load, he-
moglobin, liver function tests, and hypertension that could 
potentially affect TB/HIV co-infection survival rate, were not 
considered. Despite that, our study results have policy implica-
tions, and can be used as a reference point for further studies. 
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